首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal sloughing in lizards is determined by the formation of an intraepithelial shedding complex in which keratohyalin-like granules are formed. The chemical nature of these granules is unknown, as is their role in keratinization. The goal of this study was to test whether they contain some amino acids similar to those found in mammalian keratohyalin. The embryonic and regenerating epidermis of lizards are useful systems to study the formation of these granules. Histochemically keratohyalin-like granules react to histidine and contain some sulfhydryl groups (cysteine). X-ray microanalysis shows that these granules contain sulfur and often phosphorus, two elements also present in the mature clear, oberhautchen, and beta layer. Instead the mesos, alpha, and lacunar layers contain only sulfur. Most sulfur is probably in a disulfide-bonded form, particularly in mature cells of the shedding complex, in large keratohyalin-like granules, and in the beta-keratin layer. Early differentiating beta-keratin cells have the maximal incorporation of tritiated proline, whereas tritiated arginine is slightly more concentrated in the basal layer of the epidermis. A high uptake of tritiated histidine is observed mainly in keratohyalin-like granules of the clear layer, but also in the oberhautchen layer and forming the alpha-lacunar layer. Immunogold electron microscopy shows that keratohyalin-like granules do not localize keratin but are embedded within a keratin network. These results suggest that keratohyalin-like granules of lizards, like mammalian keratohyalin, contain some sulfur-rich and histidine-rich proteins. These granules participate in the process of hardening of the clear layer that molds the spinulae of the deeper oberhautchen to form the superficial microornamentation.  相似文献   

2.
Little is known about specific proteins involved in keratinization of the epidermis of snakes. The presence of histidine-rich molecules, sulfur, keratins, loricrin, transglutaminase, and isopeptide-bonds have been studied by ultrastructural autoradiography, X-ray microanalysis, and immunohistochemistry in the epidermis of snakes. Shedding takes place along a shedding complex, which is composed of two layers, the clear and the oberhautchen layers. The remaining epidermis comprises different layers, some of which contain beta-keratins and others alpha-keratins. Weak loricrin, transglutaminase, and sometimes also iso-peptide-bond immunoreactivities are seen in some cells, lacunar cells, of the alpha-layer. Tritiated histidine is mainly incorporated in the shedding complex, especially in dense beta-keratin filaments in cells of the oberhautchen layer and to a small amount in cells of the clear layer. This suggests the presence of histidine-rich, matrix proteins among beta-keratin bundles. The latter contain sulfur and are weakly immunolabeled for beta-keratin at the beginning of differentiation of oberhautchen cells. After merging with beta cells, the dense beta-keratin filaments of oberhautchen cells become immunopositive for beta-keratin. The uptake of histidine decreases in beta cells, where little dense matrix material is present, while pale beta-keratin filaments increase. During maturation, little histidine labeling remains in electron-dense areas of the beta layer and in those of oberhautchen spinulae. Some roundish dense granules of oberhautchen cells rich in sulfur are negative to antibodies for alpha-keratin, beta-keratin, and loricrin. The granules eventually merge with beta-keratin, and probably contribute to the formation of the resistant matrix of oberhautchen cells. In conclusion, beta-keratin, histidine-rich, and sulfur-rich proteins contribute to form snake microornamentations.  相似文献   

3.
Alibardi L 《Tissue & cell》2003,35(4):288-296
The modified subdigital scales of some lizards allow them to climb vertical surfaces. This is due to the action of millions of tiny setae present in the digital pads. Setae are mainly composed of beta-keratin which may have some modality of aggregation similar to that of barbs and barbules of feathers. Keratins and associated proteins are involved in the organization of setae. The formation of setae in the climbing pad lamellae of the gecko Hemidactylus turcicus has been analyzed under the electron microscope after injection of tritiated histidine and immunocytochemistry for a chick scale beta-keratin. Setae are made up of dense and pale filaments, both oriented along the longer axis of setae. Beta-keratin is present in the oberhautchen layer and in the growing setae which are highly modified oberhautchen cells. Most of the immunolabeling concentrated in the central part of setae. This cross-reactivity suggests that some epitopes in chick beta-keratin are also present in gecko setae. Four hours after injection of tritiated histidine, the labeling is localized over setae, in particular in the dense filaments and less in the pale filaments. Some labeling is also seen in the keratinaceous material present in the cytoplasm of clear cells, which are believed to mold setae. The present observations suggest that both beta-keratin and denser matrix proteins, possibly incorporating histidine, are packed into growing setae. These proteins may be mixed to form pale and dense filaments oriented along the longer axis of setae, a pattern resembling that of barb and barbule cells of feathers. The role of matrix material in the orientation of the deposited beta-keratin during setal outgrowth is discussed with the problem of barb and barbule differentiation in avian feathers.  相似文献   

4.
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal.  相似文献   

5.
Alibardi L 《Tissue & cell》2000,32(2):153-162
In the epidermis of lizards, alpha- and beta-keratins are sequentially produced during a shedding cycle. Using pre- and post-embedding immunocytochemistry this study shows the ultrastructural distribution of 3 alpha-keratin antibodies (AE1, AE2, AE3) in the renewing epidermis and in the shedding complex of the regenerating tail of the lizard Podarcis muralis. The AE1 antibody that recognizes acidic low MW keratins is confined to tonofilament bundles in basal and suprabasal cells but is not present in keratinizing beta- and alpha-cells. The AE2 antibody that recognises higher MW keratins weakly stains pre-keratinized cells and intensely keratinized alpha-layers. A weak labeling is present in small electrondense areas within the beta-layer. The AE3 antibody, that recognizes low and high MW basic keratins, immunolabels tonofilament bundles in all epidermal layers but intensely the alpha-keratinizing and keratinized layers (mesos, alpha-, lacunar and clear). Keratohyalin-like granules, present in the clear cells of the shedding layer, are negative to these antibodies so that the cornified clear layer contains keratins mixed with non-keratin material. The AE3 antibody shows that the mature beta-layer and the spinulated folds of the oberhautchen are labeled only in small dense areas among the prevalent electron-pale beta-keratin material. Therefore, some alpha-keratin is still present in the beta-layer, and supports the idea that alpha-keratins (basic) function as scaffold for beta-keratin deposition.  相似文献   

6.
Lorenzo Alibardi 《Protoplasma》2014,251(4):827-837
The differentiation of the corneous layers of lizard epidermis has been analyzed by ultrastructural immunocytochemistry using specific antibodies against alpha-keratins and keratin associated beta-proteins (KAbetaPs, formerly indicated as beta-keratins). Both beta-cells and alpha-cells of the corneous layer derive from the same germinal layer. An acidic type I alpha-keratin is present in basal and suprabasal layers, early differentiating clear, oberhautchen, and beta-cells. Type I keratin apparently disappears in differentiated beta- and alpha-layers of the mature corneous layers. Conversely, a basic type II alpha-keratin rich in glycine is absent or very scarce in basal and suprabasal layers and this keratin likely does not pair with type I keratin to form intermediate filaments but is weakly detected in the pre-corneous and corneous alpha-layer. Single and double labeling experiments show that in differentiating beta-cells, basic KAbetaPs are added and replace type-I keratin to form the hard beta-layer. Epidermal alpha-keratins contain scarce cysteine (0.2–1.4 %) that instead represents 4–19 % of amino acids present in KAbetaPs. Possible chemical bonds formed between alpha-keratins and KAbetaPs may derive from electrostatic interactions in addition to cross-linking through disulphide bonds. Both the high content in glycine of keratins and KAbetaPs may also contribute to increase the hydrophobicy of the beta- and alpha-layers and the resistance of the corneous layer. The increase of gly-rich KAbetaPs amount and the bonds to the framework of alpha-keratins give rise to the inflexible beta-layer while the cys-rich KAbetaPs produce a pliable alpha-layer.  相似文献   

7.
The process of keratinization in apteric avian epidermis and in scutate scales of some avian species has been studied by autoradiography for histidine and immunohistochemistry for keratins and other epidermal proteins. Acidic or basic alpha-keratins are present in basal, spinosus, and transitional layers, but are not seen in the corneous layer. Keratinization-specific alpha-keratins (AE2-positive) are observed in the corneous layer of apteric epidermis but not in that of scutate scales, which contain mainly beta-keratin. Alpha-keratin bundles accumulate along the plasma membrane of transitional cells of apteric epidermis. In contrast to the situation in scutate scales, in the transitional layer and in the lowermost part of the corneous layer of apteric epidermis, filaggrin-like, loricrin-like, and transglutaminase immunoreactivities are present. The lack of isopeptide bond immunoreactivity suggests that undetectable isopeptide bonds are present in avian keratinocytes. Using immunogold ultrastructural immunocytochemistry a low but localized loricrin-like and, less, filaggrin-like labeling is seen over round-oval granules or vesicles among keratin bundles of upper spinosus and transitional keratinocytes of apteric epidermis. Filaggrin-and loricrin-labeling are absent in alpha-keratin bundles localized along the plasma membrane and in the corneous layer, formerly considered keratohyalin. Using ultrastructural autoradiography for tritiated histidine, occasional trace grains are seen among these alpha-keratin bundles. A different mechanism of redistribution of matrix and corneous cell envelope proteins probably operates in avian keratinocytes as compared to that of mammals. Keratin bundles are compacted around the lipid-core of apteric epidermis keratinocytes, which do not form complex chemico/mechanical-resistant corneous cell envelopes as in mammalian keratinocytes. These observations suggest that low amounts of matrix proteins are present among keratin bundles of avian keratinocytes and that keratohyalin granules are absent.  相似文献   

8.
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer.  相似文献   

9.
Immunolocalization of beta‐proteins in the epidermis of the soft‐shelled turtle explains the lack of formation of hard corneous material, Acta Zoologica, Stockholm. The corneous layer of soft‐shelled turtles derives from the accumulation of higher ratio of alpha‐keratins versus beta‐proteins as indicated by gene expression, microscopic, immunocytochemical and Western blotting analysis. Type I and II beta‐proteins of 14–16 kDa, indicated as Tu2 and Tu17, accumulate in the thick and hard corneous layer of the hard‐shelled turtle, but only type II is present in the thinner corneous layer of the soft‐shelled turtle. The presence of proline–proline and proline–cysteine–hinge dipeptides in the beta‐sheet region of all type II beta‐proteins so far isolated from the epidermis of soft‐shelled turtles might impede the formation of beta‐filaments and of the hard corneous material. Western blot analysis suggests that beta‐proteins are low to absent in the corneous layer. The ultrastructural immunolocalization of Tu2 and Tu17 beta‐proteins shows indeed that a diffuse labelling is seen among the numerous alpha‐keratin filaments present in the precorneous and corneous layers of the soft epidermis and that no dense corneous material is formed. Double‐labelling experiments confirm that alpha‐keratin prevails on beta‐proteins. The present observations support the hypothesis that the soft material detected in soft‐shelled turtles derives from the prevalent activation of genes producing type II beta‐proteins and high levels of alpha‐keratins.  相似文献   

10.
Alibardi L  Toni M 《Tissue & cell》2005,37(6):423-433
The distribution and molecular weight of epidermal proteins of gecko lizards have been studied by ultrastructural, autoradiographic, and immunological methods. Setae of the climbing digital pads are cross-reactive to antibodies directed against a chick scutate scale beta-keratin but not against feather beta-keratin. Cross-reactivity for mammalian loricrin, sciellin, filaggrin, and transglutaminase are present in alpha-keratogenic layers of gecko epidermis. Alpha-keratins have a molecular weight in the range 40-58 kDa. Loricrin cross-reactive bands have molecular weights of 42, 50, and 58 kDa. Bands for filaggrin-like protein are found at 35 and 42 kDa, bands for sciellin are found at 40-45 and 50-55 kDa, and bands for transglutaminase are seen at 48-50 and 60 kDa. The specific role of these proteins remains to be elucidated. After injection of tritiated histidine, the tracer is incorporated into keratin and in setae. Tritiated proline labels the developing setae of the oberhautchen and beta layers, and proline-labeled proteins (beta-keratins) of 10-14, 16-18, 22-24 and 32-35 kDa are extracted from the epidermis. In whole epidermal extract (that includes the epidermis with corneous layer and the setae of digital pads), beta-keratins of low-molecular weight (10, 14-16, and 18-19 kDa) are prevalent over those at higher molecular weight (34 and 38 kDa). In contrast, in shed epidermis of body scales (made of corneous layer only while setae were not collected), higher molecular weight beta-keratins are present (25-27 and 30-34 kDa). This suggests that a proportion of the small beta-keratins present in the epidermis of geckos derive from the differentiating beta layer of scales and from the setae of digital pads. Neither small nor large beta-keratins of gecko epidermis cross-react with an antibody specifically directed against the feather beta-keratin of 10-12 kDa. This result shows that the 10 and 14-16 kDa beta-keratins of gecko (lepidosaurian) have a different composition than the 10-12 kDa beta-keratin of feather (archosaurian). It is suggested that the smaller beta-keratins in both lineages of sauropsids were selected during evolution in order to build elongated bundles of keratin filaments to make elongated cells. Larger beta-keratins in reptilian scales produce keratin aggregations with no orientation, used for mechanical protection.  相似文献   

11.
Mammalian epidermis utilizes histidine-rich proteins (filaggrins) to aggregate keratin filaments and form the stratum corneum. Little is known about the involvement of histidine-rich proteins during reptilian keratinization. The formation of the shedding complex in the epidermis of snakes and lizards, made of the clear and the oberhautchen layers, determines the cyclical epidermal sloughing. Differently from snakes, keratohyalin-like granules are present in the clear layer of lizards. The uptake of tritiated histidine into the epidermis of two lizards and one snake has been studied by autoradiography in sections at progressive post-injection periods. At 40 min and 1 hr post-injection keratohyalin-like granules were not or poorly labeled. At 3-22 hr post-injection most of the labeling was present over suprabasal cells destined to form the shedding complex, in keratohyalin-like granules of the clear layer, and in the forming a-layer but was low in the forming b-layer, and in superficial keratinized layers. The analysis of the shedding complex in the pad lamellae (a specialized scale used for climbing) of a gecko showed that the setae and the cytoplasm of clear cells among them are main sites of histidine uptake at 4 hr post-injection. In the snake most of the labeling at 4 hr post-injection was localized in the shedding complex along the boundary between the clear and oberhautchen layers. The present study suggests that, in the epidermis of lepidosaurian reptiles, the synthesis of a histidine-rich protein is involved in the formation of the shedding layer and, as in mammals, in a-keratinization.  相似文献   

12.
Beta (beta) keratins are present only in the avian and reptilian epidermises. Although much is known about the biochemistry and molecular biology of the beta keratins in birds, little is known for reptiles. In this study we have examined the distribution of beta keratins in the adult epidermis of turtle, lizard, snake, tuatara, and alligator using light and electron immunocytochemistry with a well-characterized antiserum (anti-beta(1) antiserum) made against a known avian scale type beta keratin. In lizard, snake, and tuatara epidermis this antiserum reacts strongly with the beta-layer, more weakly with the oberhautchen before it merges with the beta-layer, and least intensely with the mesos layer. In addition, the anti-beta(1) antiserum reacts specifically with the setae of climbing pads in gekos, the plastron and carapace of turtles, and the stratum corneum of alligator epidermis. Electron microscopic studies confirm that the reaction of the anti-beta(1) antiserum is exclusively with characteristic bundles of the 3-nm beta keratin filaments in the cells of the forming beta-layer, and with the densely packed electron-lucent areas of beta keratin in the mature bet- layer. These immunocytochemical results suggest that the 3-nm beta keratin filaments of the reptilian integument are phylogenetically related to those found in avian epidermal appendages.  相似文献   

13.
In amphibian epidermis mucus is thought to constitute the matrix material that links keratin filaments present in cells of the corneous layer. As contrast in mammals, and perhaps in all amniotes, histidine-rich proteins form the matrix material. In order to address the study of matrix molecules in the epidermis of the first tetrapods, the amphibians, an autoradiographic and electrophoretic study has been done after administration of tritiated histidine. Histological analysis of amphibian epidermis shows that histidine is taken up in the upper intermediate and replacement layers beneath the corneous layer. Ultrastructural autoradiographic analysis reveals that electron-dense interkeratin material is labeled after administration of tritiated histidine. Electrophoretic analysis of the epidermis shows labeled proteic bands at 58-61, 50-55, 40-45, and some only weakly labeled at 30 and 24-25 kDa at 4-48 hours after injection of tritiated histidine. Keratin markers show that bands at 40-61 kDa contain keratins. Most histidine is probably converted into other amino acids such as glutamate and glutamine that are incorporated into newly synthetized keratins. However, non-keratin histidine-incorporating proteins within the keratin range could also be formed. The bands at 30 and 24-25 kDa suggest that these putative histidine-rich proteins are not keratins. In fact, their molecular weigh is below the range of that for keratins. In contrast with the mammalian condition, but resembling reports for lizard epidermis, putative histidine-rich proteins in amphibians have no high molecular weight precursor. Although filaggrin is not detectable by immunofluorescence in sections of amphibian epidermis, protein extraction, electrophoresis and immunoblotting are more sensitive. In the epidermis of toad and frog, but only occasionally in that of newt, filaggrin cross-reactive proteic bands are seen at 50-55, 40-45, and sometimes at 25 kDa. This suggests that after extraction and unmasking of reactive sites in the epidermis of more terrestrial amphians (anurans), some HRPs with filaggrin-like cross-reactivity are present. The overlap that exists at 50-55 kDa between filaggrin-positive and AE2-positive keratins, but not that at 40-45 kDa further indicate that non-keratin, filaggrin-like proteins may be present in anuran epidermis. The present study suggests for the first time that very small amounts of histidine-rich proteins are produced among keratin filaments in upper intermediate, replacement and corneous layers of amphibian epidermis. Although the molecular composition of these proteins is unknown, precluding understanding of their relationship to those of mammals and reptiles, these cationic proteins might have originated in conjunction with the formation of a horny layer during the adaptation to land during the Carboniferous and were possibly refined later in the epidermis of amniotes.  相似文献   

14.
In the stratum granulosum of mammalian epidermis, histidin-rich proteins (filaggrins) determine keratin clumping and matrix formation into terminal keratinocytes of the stratum corneum. The nature of matrix, interkeratin proteins in the epidermis of nonmammalian vertebrates, and in particular in that of reptilian, mammalian progenitors are unknown. The present biochemical study is the first to address this problem. During a specific period of the renewal phase of the epidermis of lizards and during epidermal regeneration, keratohyalin-like granules are formed, at which time they take up tritiated histidine. The latter also accumulate in cells of the alpha-keratin layer (soft keratin). This pattern of histidine incorporation resembles that seen in keratohyalin granules of the stratum granulosum of mammalian epidermis. After injection of tritiated histidine, we have analysed the distribution of the radioactivity by histoautoradiography and electrophoretic gel autoradiography of epidermal proteins. Extraction and electrophoretic separation of interfilamentous matrix proteins from regenerating epidermis 3-48 hours post-injection reveals the appearance of protein bands at 65-70, 55-58, 40-43, 30-33, 25-27, and 20-22 kDa. Much weaker bands were seen at 100, 140-160, and 200 kDa. A weak band at 20-22 kDa or no bands at all are seen in the normal epidermis in resting phase and in the dermis. In regenerating epidermis at 22 and 48 hours post-injection, little variation in bands is detectable, but low molecular weight bands tend to increase slightly, suggesting metabolic turnover. Using anti-filaggrin antibodies against rat, human, or mouse filaggrins, some cross-reactivity was seen with more reactive bands at 40-42 and 33 kDa, but it was reduced or absent at 140, 95-100, 65-70, 50-55, and 25 kDa. This suggests that different intermediate degradative proteins of lizard epidermis may share some epitopes with mammalian filaggrins and are different from keratins with molecular weight ranging from 40 to 65-68 kDa. The immunocytochemical observation confirms that a weak filaggrin-like immunoreactivity characterizes differentiating alpha-keratogenic layers in normal and regenerating tail. A weak filaggrin labeling is discernable in small keratohyalin-like granules but is absent from the larger granules and from mature keratinocytes. The present results indicate, for the first time, that histidine-rich proteins are involved in the process of alpha-keratinization in reptilian epidermis. The cationic, interkeratin matrix proteins implicated may be fundamentally similar in both theropsid-derived and sauropsid amniotes.  相似文献   

15.
Reptilian epidermis contains two types of keratin, soft (alpha) and hard (beta). The biosynthesis and molecular weight of beta-keratin during differentiation of lizard epidermis have been studied by autoradiography, immunocytochemistry and immunoblotting. Tritiated proline is mainly incorporated into differentiating and maturing beta-keratin cells with a pattern similar to that observed after immunostaining with a chicken beta-keratin antibody. While the antibody labels a mature form of beta-keratin incorporated in large filaments, the autoradiographic analysis shows that beta-keratin is produced within the first 30 min in ribosomes, and is later packed into large filaments. Also the dermis incorporates high amount of proline for the synthesis of collagen. The skin was separated into epidermis and dermis, which were analyzed separately by protein extraction and electrophoresis. In the epidermal extract proline-labeled proteic bands at 10, 15, 18-20, 42-45, 52-56, 85-90 and 120 kDa appear at 1, 3 and 5 h post-injection. The comparison with the dermal extract shows only the 85-90 and 120 kDa bands, which correspond to collagen. Probably the glycine-rich sequences of collagen present also in beta-keratins are weakly recognized by the beta-1 antibody. Immunoblotting with the beta-keratin antibody identifies proteic bands according to the isolation method. After-saline or urea-thiol extraction bands at 10-15, 18-20, 40, 55 and 62 kDa appear. After extraction and carboxymethylation, weak bands at 10-15, 18-20 and 30-32 kDa are present in some preparations, while in others also bands at 55 and 62 kDa are present. It appears that the lowermost bands at 10-20 kDa are simple beta-keratins, while those at 42-56 kDa are complex or polymeric forms of beta-keratins. The smallest beta-keratins (10-20 kDa) may be early synthesized proteins that are polymerized into larger beta-keratins which are then packed to form larger filaments. Some proline-labeled bands differ from those produced after injection of tritiated histidine. The latter treatment does not show 10-20 kDa labeled proteins, but tends to show bands at 27, 30-33, 40-42 and 50-62 kDa. Histidine-labeled proteins mainly localize in keratohyalin-like granules and dark keratin bundles of clear-oberhautchen layers of lizard epidermis, and their composition is probably different from that of beta-keratin.  相似文献   

16.
The formation of the stratum corneum in the epidermis of the reptile Sphenodon punctatus has been studied by histochemical, immunohistochemical, and ultrastructural methods. Sulfhydryl groups are present in the mesos and pre-alpha-layer but disappear in the keratinized beta-layer and in most of the mature alpha-layer. This suggests a complete cross-linking of keratin filaments. Tyrosine increases in keratinized layers, especially in the beta-layer. Arginine is present in living epidermal layers, in the presumptive alpha-layer, but decreases in keratinized layers. Histidine is present in corneous layers, especially in the intermediate region between the alpha- and a new beta-layer, but disappears in living layers. It is unknown whether histidine-rich proteins are produced in the intermediate region. Small keratohyalin-like granules are incorporated in the intermediate region. The plane of shedding, as confirmed from the study on molts, is located along the basalmost part of the alpha-layer and may involve the degradation of whole cells or cell junctions of the intermediate region. A specific shedding complex, like that of lizards and snakes, is not formed in tuatara epidermis. AE1-, AE2-, or AE3-positive alpha-keratins are present in different epidermal layers with a pattern similar to that previously described in reptiles. The AE1 antibody stains the basal and, less intensely, the first suprabasal layers. Pre-keratinized, alpha- and beta-layers, and the intermediate region remain unlabeled. The AE2 antibody stains suprabasal and forming alpha- and beta-layers, but does not stain the basal and suprabasal layers. In the mature beta-layer the immunostaining disappears. The AE3 antibody stains all epidermal layers but disappears in alpha- and beta-layers. Immunolocalization for chick scale beta-keratins labels the forming and mature beta-layer, but disappears in the mesos and alpha-layer. This suggests the presence of common epitopes in avian and reptilian beta-keratins. Low molecular weight alpha-keratins present in the basal layer are probably replaced by keratins of higher molecular weight in keratinizing layers (AE2-positive). This keratin pattern was probably established since the beginning of land adaptation in amniotes.  相似文献   

17.
The sequence of differentiation of the epidermis of scutes during embryogenesis in the tortoise Testudo hermanni was studied using autoradiography, electron microscopy and immunocytochemistry. The study was mainly conducted on the epidermis of the carapace, plastron and nail. Epidermal differentiation resembles that described for other reptiles, and the embryonic epidermis is composed of numerous cell layers. In the early stages of differentiation of the carapacial ridge, cytoplasmic blebs of epidermal cells are in direct contact with the extracellular matrix and mesenchymal cells. The influence of the dermis on the formation of the beta‐layer is discussed. The dermis becomes rich in collagen bundles at later stages of development. The embryonic epidermis is formed by a flat periderm and four to six layers of subperidermal cells, storing 40–70‐nm‐thick coarse filaments that may represent interkeratin or matrix material. Beta‐keratin is associated with the coarse filaments, suggesting that the protein may be polymerized on their surface. The presence of beta‐keratin in embryonic epidermis suggests that this keratin might have been produced at the beginning of chelonian evolution. The embryonic epidermis of the scutes is lost around hatching and leaves underneath the definitive corneous beta‐layer. Beneath the embryonic epidermis, cells that accumulate typical large bundles of beta‐keratin appear at stage 23 and at hatching a compact beta‐layer is present. The differentiation of these cells shows the progressive replacement of alpha‐keratin bundles with bundles immunolabelled for beta‐keratin. The nucleus is degraded and electron‐dense nuclear material mixes with beta‐keratin. In general, changes in tortoise skin when approaching terrestrial life resemble those of other reptiles. Lepidosaurian reptiles form an embryonic shedding layer and crocodilians have a thin embryonic epidermis that is rapidly lost near hacthing. Chelonians have a thicker embryonic epidermis that accumulates beta‐keratin, a protein later used to make a thick corneous layer.  相似文献   

18.
L. Alibardi  M. Toni 《Tissue & cell》2009,41(3):180-192
The present study analyzes the structure and the main proteins of reptilian claws. Mature claws are formed by two to four layers of keratinocytes, a transitional layer of spindle-shaped cells and a thick corneous layer. Transitional cells elongate and merge into a compact corneous layer that is immunoreactive for beta-keratins, now indicated as sauropsid keratin-associated proteins (sKAPs). Most proteins extracted from claws in representative reptiles have a molecular weight of 13-20 kDa, an acidic to basic isoelectric point, and are identified from the positive immunoreactivity to beta-keratin antibodies. The comparative analysis between lizard and avian claw beta-keratins shows the presence of an internal region of 20 amino acids with the highest identity, indicated as core-box, within an extended 32-amino acid region with a prevalent beta-sheet secondary conformation. This region is structurally equivalent to a 32-amino acid region present in scale beta-keratins of most reptiles. Both reptilian and avian keratins contain glycine-rich regions for stabilization of the beta-keratin polymer. The N- and C-regions contain most cysteine for disulphide-bonds formation. Claw proteins contain higher amount of cysteine and glycine than other scale proteins, suggesting that claw proteins are specialized cysteine-glycine-rich proteins suited to produce a very hard corneous material.  相似文献   

19.
Study of the histology, histochemistry, and fine structure of caudal epidermal regeneration in Sphenodon punctatus through restoration of a scaled form reveals that the processes involved resemble those known in lizards. Following establishment of a wound epithelium (WE), subjacent scale neogenesis involves epidermal downgrowths into the dermis. Although the process is extremely slow, and most new scales do not overlap, their epidermal coverings reestablish epidermal generation (EG) formation. As in lizards, the flat, alpha-keratogenic, WE cells contain lipids as revealed by their affinity for Sudan III. A few mucous cells that store large PAS-positive mucus-like granules also occur in WE. During differentiation of WE cells, among the bundles of 70-nm tonofilaments are many lamellar bodies (LBs) and mucous granules (MGs) that discharge their contents into the cytoplasm and extracellular spaces producing a strongly PAS-positive keratinized tissue. Richness of epidermal lipids coexistent with mucus is a primitive characteristic for amniote vertebrates, probably related to functions as a barrier to cutaneous water loss (CWL). As scale neogenesis begins, beneath the superficial WE appear 3-5 layers of irregularly shaped cells. These contain tonofilament bundles surrounded by small, round keratohyalin-like granules (KHLGs) and a keratinized matrix with beta-keratin packets and a 3-5-nm thick keratin granulation. This mixture of alpha- and beta-keratogenic capacities resembles that seen in the innermost cells of a normal tuatara epidermal generation. As in the latter, but in contrast to both normal and regenerating lizard epidermis, no definable shedding complex with interdigitating clear layer and oberhautchen cells occurs (Alibardi and Maderson, 2003). The tortuous boundaries, and merging beta-keratin packets, identify subjacent keratinizing cells as precursors of the typical stratified, squamous beta-layer seen in long-term regenerated caudal skin wherein the entire vertical sequence of epidermal layers resembles that of normal scales. The sequence of events in caudal epidermal regeneration in S. punctatus resembles that documented for lizards. Observed differences between posttrauma scale neogenesis and scale embryogenesis are responses to functional problems involved in, respectively, restoring, or forming, a barrier to CWL while accommodating rapid somatic growth.  相似文献   

20.
The process of cornification in the shell and non-shelled areas of the epidermis of the turtle Chrysemys picta was analyzed by light and ultrastructural immunohistochemistry for keratins, filaggrin and loricrin. Beta-keratin (hard keratin) was only present in the corneus layer of the plastron and carapace. The use of a beta-keratin antibody, developed against a specific chick scale beta-keratin, demonstrated that avian and reptilian hard keratins share common amino acid sequences. In both, shelled and non-shelled epidermis, acidic alpha keratin (AE1 positive) was limited to tonofilament bundles of the basal and suprabasal layer, while basic keratin (AE3 positive) was present in basal, suprabasal, and less intensely, pre-corneus layers, but tended to disappear in the corneus layer. The AE2 antibody, which in mammalian epidermis recognizes specific keratins of cornification, did not stain turtle shell but only the corneus layer of non-shelled (soft) epidermis. Two and four hours after an injection of tritiated histidine, the labelling was evenly distributed over the whole epidermis of both shelled and non-shelled areas, but was absent from the stratum corneum. In the areas of growth at the margin of the scutes of the shell, the labelling increased in precorneus layers. This suggests that histidine uptake is only related to shell growth and not to the production of a histidine-rich protein involved in keratinization. No filaggrin-like and loricrin-like immunoreactivity was seen in the carapace or plastron epidermis. However, in both proteins, some immunoreactivity was found in the transitional layer and in the lower level of the corneus layer of non-shelled areas. Loricrin- and filaggrin-like labelling was seen in small organelles (0.05-0.3 mum) among keratin bundles, identified with mucous-like granules and vesicular bodies. These organelles, present only in non-shelled epidermis, were more frequent along the border with the corneus layer, and labelling was low to absent in mature keratinocytes. This may be due to epitope masking or degradation. The immunolabelling for filaggrin was seen instead in the extracellular space among mature keratinocytes, over a material previously identified as mucus. The possibility that this labelling identified some epitopes derived from degraded portions of a filaggrin-like molecule is discussed. The present study suggests that proteins with some filaggrin- and loricrin-immunoreactivity are present in alpha-keratinocytes but not in beta-keratin cells of the shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号