首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Angiotensin II activates the Jak-STAT pathway via the AT(1) receptor. We studied two mutant AT(1) receptors, termed M5 and M6, that contain Y to F substitutions for the tyrosine residues naturally found in the third intracellular loop and the carboxyl terminus. After binding ligand, both the M5 and M6 AT(1) receptors trigger STAT1 tyrosine phosphorylation equivalent to that observed with the wild type receptor, indicating that angiotensin II-mediated phosphorylation of STAT1 is independent of these receptor tyrosine residues. In response to angiotensin II, Jak2 autophosphorylates on tyrosine, and Jak2 and STAT1 physically associate, a process that depends on the SH2 domain of STAT1 in vitro. Evaluation of the wild type, M5, and M6 AT(1) receptors showed that angiotensin II-dependent AT(1) receptor-Jak2-STAT1 complex formation is dependent on catalytically active Jak2, not on the receptor tyrosine residues in the third intracellular loop and carboxyl tail. Immunodepletion of Jak2 virtually eliminated the ligand-dependent binding of STAT1 to the AT(1) receptor. These data indicate that the association of STAT1 with the AT(1) receptor is not strictly bimolecular; it requires Jak2 as both a STAT1 kinase and as a molecular bridge linking STAT1 to the AT(1) receptor.  相似文献   

3.
The interferon-alpha (IFNalpha) receptor consists of two subunits, the IFNalpha receptor 1 (IFNaR1) and 2 (IFNaR2) chains. Following ligand binding, IFNaR1 is phosphorylated on tyrosine 466, and this site recruits Stat2 via its SH2 domain. In contrast, IFNaR2 binds Stat2 constitutively. In this study we have characterized the Stat2-IFNaR2 interaction and examined its role in IFNalpha signaling. Stat2 binds the major IFNaR2 protein but not a variant containing a shorter cytoplasmic domain. The interaction does not require a STAT SH2 domain. Both tyrosine-phosphorylated and non-phosphorylated Stat2 bind IFNaR2 in vitro; however, relatively little phosphorylated Stat2 associates with IFNaR2 in vivo. In vitro binding assays defined IFNaR2 residues 418-444 as the minimal interaction domain and site-specific mutation of conserved acidic residues within this domain disrupted in vitro and in vivo binding. An IFNaR2 construct carrying these mutations was either (i) overexpressed in 293T cells or (ii) used to complement IFNaR2-deficient U5A cells. Unexpectedly, the activity of an IFNalpha-dependent reporter gene was not reduced but, instead, was enhanced up to 2-fold. This suggests that this particular IFNaR2-Stat2 interaction is not required for IFNalpha signaling, but might act to negatively inhibit signaling. Finally, a doubly truncated recombinant fragment of Stat2, spanning residues 136-702, associated with IFNaR2 in vitro, indicating that the interaction with IFNaR2 is direct and occurs in a central region of Stat2 marked by a hydrophobic core.  相似文献   

4.
5.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

6.
7.
The V protein of simian virus 5 (SV5) facilitates the ubiquitination and subsequent proteasome-mediated degradation of STAT1. Here we show, by visualizing direct protein-protein interactions and by using the yeast two-hybrid system, that while the SV5 V protein fails to bind to STAT1 directly, it binds directly and independently to both DDB1 and STAT2, two cellular proteins known to be essential for SV5-mediated degradation of STAT1. We also demonstrate that STAT1 and STAT2 interact independently of SV5 V and show that SV5 V protein acts as an adaptor molecule linking DDB1 to STAT2/STAT1 heterodimers, which in the presence of additional accessory cellular proteins, including Cullin 4a, can ubiquitinate STAT1. Additionally, we show that the avidity of STAT2 for V is relatively weak but is significantly enhanced by the presence of both STAT1 and DDB1, i.e., the complex of STAT1, STAT2, DDB1, and SV5 V is more stable than a complex of STAT2 and V. From these studies we propose a dynamic model in which SV5 V acts as a bridge, bringing together a DDB1/Cullin 4a-containing ubiquitin ligase complex and STAT1/STAT2 heterodimers, which leads to the degradation of STAT1. The loss of STAT1 results in a decrease in affinity of binding of STAT2 for V such that STAT2 either dissociates from V or is displaced from V by STAT1/STAT2 complexes, thereby ensuring the cycling of the DDB1 and SV5 V containing E3 complex for continued rounds of STAT1 ubiquitination and degradation.  相似文献   

8.
Specialized neurons throughout the developing central nervous system secrete Reelin, which binds to ApoE receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), triggering a signal cascade that guides neurons to their correct position. Binding of Reelin to ApoER2 and VLDLR induces phosphorylation of Dab1, which binds to the intracellular domains of both receptors. Due to differential splicing, several isoforms of ApoER2 differing in their ligand-binding and intracellular domains exist. One isoform harbors four binding repeats plus an adjacent short 13 amino acid insertion containing a furin cleavage site. It is not known whether furin processing of this ApoER2 variant actually takes place and, if so, whether the produced fragment is secreted. Here we demonstrate that cleavage of this ApoER2 variant does indeed take place, and that the resulting receptor fragment consisting of the entire ligand-binding domain is secreted as soluble polypeptide. This receptor fragment inhibits Reelin signaling in primary neurons, indicating that it can act in a dominant-negative fashion in the regulation of Reelin signaling during embryonic brain development.  相似文献   

9.
The rat liver sinusoidal endothelial cell (LEC) hyaluronan (HA)receptor was previously identified using a photoaffinity HAderivative (J. BioL Chem., 267, 20451–20456, 1992). Twopolypeptides with Mr = 175,000 and 166,000, were consistentlycrosslinked, suggesting that the LEC HA receptor is an oligomer.Whether one or both subunits participate in HA binding, wasnot determined. Here we investigate the HA-subunit interactionsand the potential oligomeric nature of the LEC HA receptor.When Sephacryl-400 gel filtration chromatography was used toenrich the HA receptor, the 175 kDa polypeptide was the majorband seen by SDS-PAGE analysis. Little staining was seen at166 kDa, suggesting that the 175 kDa protein could be separatedfrom the 166 kDa protein and still retain HA-binding activity.A ligand blot assay was used to determine if each individualsubunit could bind HA. LEC proteins were separated by nonreducingSDS-PAGE, and then immobilized onto nitrocellulose. 125I-HAbound to a 175 kDa polypeptide but not to the 166 kDa protein.A high molecular weight band of  相似文献   

10.
Besides the monomeric mammalian 95 kDa progelatinase, two additional forms, a disulfide-bridged 220 kDa dimer and a 125 kDa form were isolated from human PMN leukocytes. The 125 kDa progelatinase was identified as a covalently linked, disulfide-bridged heterodimer formed of the monomer with a 25 kDa protein. This 25 kDa protein was isolated from gelatinase bound to the affinity support of gelatin-Sepharose and eluted by DTE-containing buffer. The amino acid sequence of tryptic peptides of this protein revealed homology with an alpha 2-microglobulin-related protein from rats, a protein so far unknown in humans.  相似文献   

11.
Carboxyl group modification with DCCD and NCD-4 was employed to investigate the chemical environment of the side chains of archaeopsin-1 (aO-1) and bacterioopsin (bO). Some differences were observed between aO-1 and bO. Although DCCD or NCD-4 did not modify aO-1 in bleached membrane, they modified bO in bleached membrane and in mixed DMPC/CHAPS/SDS micelles at neutral pH, thereby affecting the opsin shift and the photocycle of the regenerated chromophore. On the contrary, after solubilization with SDS, aO-1 and bO were modified by DCCD and NCD-4, which decreased the chromophore regeneration. In particular, the reaction of aO-1 in SDS with NCD-4 proceeded in a 1:1 ratio at neutral pH. The fluorescence and CD spectra indicated that the modified site was located in the hydrophobic, asymmetrical region. Lysyl-endopeptidase digestion of NCD-4 modified aO-1 produced a fluorescent fragment and amino acid sequence analysis showed that Asp85 or Asp96 in helix C is a probable candidate for the modified residue at present. Kinetic CD measurements revealed that the introduction of N-acylurea at an Asp residue in helix C did not affect the formation of the transient intermediate but inhibited the side chain packing during refolding.  相似文献   

12.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

13.
The dimerization properties of the ghrelin receptor (GRLN-R) and its non-signalling, naturally occurring, truncated splice variant (GHS-R1b) have been investigated in human embryonic kidney 293 cells heterologously expressing these proteins. Using the techniques of bioluminescence resonance energy transfer and co-immunoprecipitation, we detected the formation of GRLN-R homodimers and GRLN-R/GHS-R1b heterodimers, but ghrelin-induced conformational changes were only detected in the GRLN-R homodimers. When the expression of GHS-R1b exceeded that of GRLN-R, there was a decrease in the cell surface expression of GRLN-R with a consequent decrease in constitutive activation of phosphatidylinositol-specific phospholipase C (PI-PLC). Furthermore, there was no change in ghrelin affinity, and the efficacy of cell signalling as measured by stimulation of PI-PLC and extracellular signal-regulated kinase 1/2 was unchanged. Cellular localization studies suggest that GRLN-R is normally distributed between the plasma membrane and cytosolic fractions, but in the presence of GHS-R1b, GRLN-R is localized to the nucleus. Therefore, we propose that the decrease in GRLN-R constitutive signalling was due to translocation of GRLN-R to the nucleus due to the formation of GRLN-R/GHS-R1b heterodimers. Therefore, GHS-R1b appears to act as a dominant-negative mutant of the full-length GRLN-R.  相似文献   

14.
15.
《FEBS letters》1987,212(1):145-148
SDS gel electrophoresis of microtubule proteins obtained from bovine brain by polymerization cycles revealed a new protein of 18 kDa. This protein was copolymerized with tubulin and its stoichiometry to tubulin remained constant for at least 5 cycles of assembly. Moreover, this protein remained bound to microtubules stabilized with 10 μM taxol and pelleted through a 4 M glycerol cushion. The same 18 kDa protein was found in a purified preparation of the high molecular mass microtubule-associated protein 1 (MAP-1). The 18 kDa protein copurified with the MAP-1 heavy chains during column chromatography on phosphocellulose, DEAE-cellulose, hydroxyapatite and Bio-Gel A-15m. Incubation of the MAP-1 preparation with a mouse monoclonal antibody to the light chain 1 (LC-1) of MAP-1 and with a second precipitating antibody (a rabbit antibody to mouse IgG) immunoprecipitated from the solution all the known components of MAP-1 (heavy chains, LC-1, LC-2), as well as the 18 kDa protein. Immunoblotting showed, however, that this antibody does not interact directly with the 18 kDa protein. These results indicate that the 18 kDa protein forms a complex with all other components of MAP-1. This polypeptide, therefore, is a new light chain (LC-3) of M AP-1.  相似文献   

16.
The proton-translocating adenosine triphosphatase (ATPase) of bovine chromaffin granules contains up to five different polypeptides. Its activity is inhibited by N-ethylmaleimide, and ATP protects the enzyme from inhibition. After treatment of membranes with N-[2-3H]ethylmaleimide, only one polypeptide is strongly radiolabelled: this is the largest (70 kDa) subunit of the proton-translocating ATPase. This subunit therefore contains the ATP-hydrolysing site. Two-dimensional electrophoresis reveals heterogeneity in this polypeptide.  相似文献   

17.
Detergent-purified myofibrils from bovine heart contained very little spontaneously active protein phosphatase 1 activity. Phosphatase 1, extracted from the myofibrils by freeze-thawing in the presence of 500 mM KCl, was markedly activated by cobalt/trypsin treatment. Myofibril phosphatase 1 was separated from phosphatase 2A by chromatography on heparin-Sepharose. The phosphatase 1 was isolated in a latent form. Pretreatment with trypsin released free catalytic subunit and increased activity about 25-fold. Addition of cobalt with the trypsin increased activity another 2-fold. The latent myofibril phosphatase 1 did not appear to be the same as previously characterized forms of protein phosphatase 1. We suggest that cardiac myofibril phosphatase 1 contains a unique inhibitory subunit which directs the enzyme to the myofibril and regulates the dephosphorylation of myofibril phosphoproteins.  相似文献   

18.
Although factor VII/factor VIIa (FVII/FVIIa) is known to interact with many non-vascular cells, activated monocytes, and endothelial cells via its binding to tissue factor (TF), the interaction of FVII/FVIIa with unperturbed endothelium and the role of this interaction in clearing FVII/FVIIa from the circulation are unknown. To investigate this, in the present study we examined the binding of radiolabeled FVIIa to endothelial cells and its subsequent internalization. (125)I-FVIIa bound to non-stimulated human umbilical vein endothelial cells (HUVEC) in time- and dose-dependent manner. The binding is specific and independent of TF and negatively charged phospholipids. Protein C and monoclonal antibodies to endothelial cell protein C receptor (EPCR) blocked effectively (125)I-FVIIa binding to HUVEC. FVIIa binding to EPCR is confirmed by demonstrating a marked increase in (125)I-FVIIa binding to CHO cells that had been stably transfected with EPCR compared with the wild-type. Binding analysis revealed that FVII, FVIIa, protein C, and activated protein C (APC) bound to EPCR with similar affinity. FVIIa binding to EPCR failed to accelerate FVIIa activation of factor X or protease-activated receptors. FVIIa binding to EPCR was shown to facilitate FVIIa endocytosis. Pharmacological concentrations of FVIIa were found to impair partly the EPCR-dependent protein C activation and APC-mediated cell signaling. Overall, the present data provide convincing evidence that EPCR serves as a cellular binding site for FVII/FVIIa. Further studies are needed to evaluate the pathophysiological consequences and relevance of FVIIa binding to EPCR.  相似文献   

19.
Zheng Y  Zhang L  Jia X  Wang H  Hu Y 《FEBS letters》2012,586(2):122-126
In this study, the evolutionarily conserved intracellular adaptor protein, receptor of activated C kinase 1 (RACK1) was identified as a novel interaction partner of protein inhibitor of activated STAT 2 (PIAS2) using a yeast two-hybrid screening system. The direct interaction and co-localization of RACK1 with PIAS2 was confirmed by immunoprecipitation and immunofluorescence staining analysis, respectively. The 5th to 7th Trp-Asp 40 (5-7 WD40) repeats of RACK1 were identified as the minimal domain required for interaction with PIAS2 by deletion analysis. Furthermore, multiple PIAS2-domains, particularly the 'PINIT' and RLD domains, bind the RACK1 5-7 WD40 domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号