首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ticks play an important role in the transmission of arthropod-borne diseases of viral, protozoal and bacterial origin. The present article describes a molecular-biological based method, which facilitated the broad-range analyses of bacterial communities in ixodid ticks (Ixodes ricinus). DNA was extracted both from single ticks and pooled adult ticks. Eubacterial 16S rRNA gene fragments (16S rDNA) were amplified by polymerase chain reaction (PCR) with broad-range ribosomal primers. Sequences spanning the hypervariable V3 region of the 16S rDNA and representing individual bacterial taxons were separated by denaturing gradient gel electrophoresis (DGGE). For phylogenetic identification, DGGE bands were exised, cloned and sequenced. In addition, we set up a 16S rDNA clone library which was screened by DGGE. Sequences were compared with sequences of known bacteria listed in the GenBank database. A number of bacteria were affiliated with the genera Rickettsia, Bartonella, and Borrelia, which are known to be pathogenic and transmitted by ticks. Two sequences were related to the yet to be cultivated Haemobartonella. To our knowledge, Haemobartonella has never been directly detected in I. ricinus. In addition, members of the genera Staphylococcus, Rhodococcus, Pseudomonas, and Moraxella were detected, which have not been identified in ticks so far. Two bacteria were most closely related to a rickettsial endosymbiont of an Acanthamoeba sp., and to an endosymbiont (Legionellaceae, Coxiella group) of the microarthropod Folsomia candida. The results prove that 16S rDNA genotyping in combination with DGGE analysis is a promising approach for the detection and identification of bacteria infecting ticks, regardless of whether these bacteria are fastidious, obligate intracellular or noncultivable.  相似文献   

2.
Rodents, collected in three zoogeographical regions across Slovenia, were tested for the presence of bartonellae using direct PCR-based amplification of 16S/23S rRNA gene intergenic spacer region (ITS) fragments from splenic DNA extracts. Bartonella DNA was detected in four species of rodents, Apodemus flavicollis, Apodemus sylvaticus, Apodemus agrarius and Clethrionomys glareolus, in all three zoogeographic regions at an overall prevalence of 40.4%. The prevalence of infection varied significantly between rodent species and zoogeographical regions. Comparison of ITS sequences obtained from bartonellae revealed six sequence variants. Four of these matched the ITS sequences of the previously recognized species, Bartonella taylorii, Bartonella grahamii, Bartonella doshiae and Bartonella birtlesii, but one was new. The identity of the bartonellae from which the novel ITS sequences was obtained were further assessed by sequence analysis of cell division protein-encoding gene (ftsZ) fragments. This analysis demonstrated that the strain is most likely a representative of possible new species within the genus.  相似文献   

3.
Abstract Differentiation of the four Bartonella species which were formerly classified as Rochalimaea using restriction endonuclease analysis of PCR-amplified citrate synthase gene fragments has previously been described. However, attempts to extend this method to include all members of Bartonella were confounded when amplification of the gene fragment from strains of B. bacilliformis each yielded two products of differing sizes. An alternative differentiation scheme for Bartonella species was developed based on restriction endonuclease analysis of their 16S rRNA genes. As the complete 16S rRNA gene sequences of all extant Bartonella species are available, the usefulness of specific endonucleases could be theoretically predetermined rather than discovered empirically. The potential usefulness of the restriction enzymes Ddel and Mnll was established using this approach, and this potential was confirmed in practice as all eight species could be distinguished from each other.  相似文献   

4.
Unfed adult ticks Ixodes persulcatus from five regions of Russia were examined by PCR method in order to analyze distribution and diversity of B. miyamotoi. B. miyamotoi DNA was found in 1.8, 2.9, 4.5, 2.3, and 2.5% of ticks from Leningrad, Sverdlovsk, Novosibirsk, and Irkutsk provinces, and from Khabarovsk Territory, respectively. Molecular typing of B. miyamotoi DNA was based on the partial sequencing of the 16S rRNA, p66, and glpQ genes. A single genetic variant of B. miyamotoi was detected in all the samples of ticks collected from five regions.  相似文献   

5.
Two Haemaphysalis longicornis ticks were found positive in PCR assay of com-1 gene to detect Coxiella burnetii DNA from 100 ticks. The nucleotide sequences of com-1 and 16S rRNA gene were determined from 2 ticks and compared with those of other C. burnetii strains. The results suggest that H. longicornis harbor Coxiella sp. bacteria in Korea. Furthermore, icd, cbhE', and cbbE' genes are C. burnetii specific genes whereas com-1 gene is Coxiella genus specific gene. This study gives the first documentation to prove the existence of Coxiella sp. in tick collected in Korea.  相似文献   

6.
The potential role of roe deer as a sylvatic reservoir of Bartonella in north-west Poland has been assessed. In addition, ticks infesting roe deer were screened to assess their role as a vector and reservoir of Bartonella. Blood and tissue samples of 72 animals from north-western Poland were PCR-screened. Bartonella DNA was detected by using primers complementary to the intergenic spacer between the 16S and 23S rRNA genes, which is used for identification of over a dozen species of this genus. Products of three different sizes were detected: 230 and 290 bp, representative of two strains of Bartonella capreoli, and 190 bp, identified as Bartonella bovis. All the three amplicons were detected in the blood, spleen and liver from the roe deer. All samples from the heart, lungs and kidneys were PCR negative. In ticks (Ixodes ricinus), only the 290 bp fragment from B. capreoli was present. Generally, Bartonella infection rate in Capreolus capreolus amounted to 27.6% of the roe deer, but it was much higher during winter (62%) than in spring (6.9%). The results show that the roe deer may be a reservoir for B. capreoli and B. bovis. The infection detected in I. ricinus ticks (7.7%) suggests that ticks may act as a Bartonella reservoir and vector.  相似文献   

7.
High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned. Ten unique sequences were obtained: one sequence each clustered with Bifidobacterium (Gram-positive eubacteria), Lactobacillus (Gram-positive eubacteria), and Gluconacetobacter (Gram-negative alpha-proteobacteria); two sequences each clustered with Simonsiella (beta-proteobacteria) and Serratia (gamma-proteobacteria); and three sequences each clustered with Bartonella (alpha-proteobacteria). Although the sequences relating to these six bacterial genera initially were obtained from either A. m. capensis or A. m. scutellata or both, newly designed honeybee-specific 16S rRNA primers subsequently amplified all sequences from all individual workers of both subspecies. Attempts to amplify these sequences from eggs have failed. However, the wsp primers designed to amplify Wolbachia DNA from arthropods, including these bees, consistently produced a 0.6-kb DNA band from individual eggs, indicating that amplifiable bacterial DNA was present. Hence, the 10 bacteria could have been acquired orally from workers or from other substrates. This screening of 16S rRNA sequences from A. m. capensis and A. m. scutellata found sequences related to Lactobacillus and Bifidobacterium which previously had been identified from other honeybee subspecies, as well as sequences related to Bartonella, Gluconacetobacter, Simonsiella/Neisseria, and Serratia, which have not been identified previously from honeybees.  相似文献   

8.
In an effort to overcome historical problems associated with the isolation of Bartonella species from animal and human blood samples, our laboratory developed a novel, chemically modified, insect-based, liquid culture medium (Bartonella alpha-Proteobacteria growth medium, BAPGM). In this study, we describe the isolation of non-Bartonella bacteria from aseptically obtained human blood and tissue samples that were inoculated into BAPGM pre-enrichment culture medium, and were obtained during attempts to define each individuals Bartonella infection status. After incubation for at least 7 days in liquid BAPGM, pre-enriched inoculums were sub-cultured onto a BAPGM/blood agar plate. Bacterial DNA was extracted from pooled plated colonies and amplified using conventional PCR targeting the 16S rRNA gene. Subsequently, amplicons were cloned, sequenced and compared to GenBank database sequences using the BLAST program. Regardless of the patient's Bartonella status, seventeen samples generated only one 16S rDNA sequence, representing the following genera: Arthrobacter, Bacillus, Bartonella, Dermabacter, Methylobacterium, Propionibacterium, Pseudomonas, Staphylococcus and bacteria listed as "non-cultured" in the GenBank database. Alkalibacterium, Arthrobacter, Erwinia, Kineococcus, Methylobacterium, Propionibacterium, Sphingomonas, and Staphylococcus were isolated from nine Bartonella-infected individuals. Co-isolation of Acinetobacter, Sphingomonas, Staphylococcus spp. and bacteria listed as "non-cultured" in the GenBank database was achieved for four samples in which Bartonella spp. were not detected. Despite the phylogenetic limitations of using partial 16S rRNA gene sequencing for species and strain identification, the investigational methodology described in this study may provide a complementary approach for the isolation and identification of bacteria from patient samples.  相似文献   

9.
An intracellular bacterium from Ixodes ricinus ticks collected in Italy was characterized by electron microscopy (EM), PCR sequencing of the 16S rRNA gene, molecular phylogenetic analysis, and in situ hybridization (ISH). This bacterium was shown by EM to be present in the cytoplasm, as well as in the mitochondria of ovarian cells. When universal 16S rRNA bacterial primers were used, PCR amplification of ovarian DNA followed by cloning and sequencing resulted in the same sequence being found in each sample. Phylogenetic analysis of this sequence showed that the bacterium from which it was derived, tentatively designated IricES1, is part of a novel clade in the alpha subdivision of the Proteobacterium: ISH and PCR assays of various tissues performed with oligonucleotides specific for the IricES1 16S rRNA showed that IricES1 is restricted to ovarian cells. Based on the results obtained, we inferred that the bacteria seen by EM in ovarian cells are a single type of bacteria, corresponding to IricES1. PCR screening of 166 ticks from various parts of Italy and one site in England showed that IricES1 was present in 96% of adult females and 44% of nymphs (unsexed). No adult males were found to be infected. Despite the apparent parasitism of host mitochondria by IricES1, the available information suggests that the bacterium has an obligate relationship with its host, although this must be confirmed.  相似文献   

10.
An intracellular bacterium from Ixodes ricinus ticks collected in Italy was characterized by electron microscopy (EM), PCR sequencing of the 16S rRNA gene, molecular phylogenetic analysis, and in situ hybridization (ISH). This bacterium was shown by EM to be present in the cytoplasm, as well as in the mitochondria of ovarian cells. When universal 16S rRNA bacterial primers were used, PCR amplification of ovarian DNA followed by cloning and sequencing resulted in the same sequence being found in each sample. Phylogenetic analysis of this sequence showed that the bacterium from which it was derived, tentatively designated IricES1, is part of a novel clade in the alpha subdivision of the Proteobacteria. ISH and PCR assays of various tissues performed with oligonucleotides specific for the IricES1 16S rRNA showed that IricES1 is restricted to ovarian cells. Based on the results obtained, we inferred that the bacteria seen by EM in ovarian cells are a single type of bacteria, corresponding to IricES1. PCR screening of 166 ticks from various parts of Italy and one site in England showed that IricES1 was present in 96% of adult females and 44% of nymphs (unsexed). No adult males were found to be infected. Despite the apparent parasitism of host mitochondria by IricES1, the available information suggests that the bacterium has an obligate relationship with its host, although this must be confirmed.  相似文献   

11.
A reverse line blot hybridisation (RLB) assay was applied to screen Amblyomma variegatum adult ticks (n = 504) collected from N'Dama cattle in the Republic of Guinea. In a PCR, the V1 hypervariable region of the 16S ribosomal RNA (rRNA) gene was amplified with a set of primers unique for species of the genera Anaplasma and Ehrlichia, and the V4 hypervariable region of the 18S rRNA gene was amplified with primers specific for members of the genera Theileria and Babesia. Amplified PCR products from A. variegatum ticks were hybridised onto a membrane, to which oligonucleotide probes species-specific for Ehrlichia/Anaplasma and Theileria/Babesia parasites were covalently linked. No pathogens belonging to Ehrlichia/Anaplasma species were found, while 10 DNA samples resulted positive for Babesia caballi and 5 samples for Theileria velifera. This is the first report of B. caballi in A. variegatum ticks. One of the B. caballi positive samples was sequenced. This new strain (BcabGuinea) showed a 97% similarity to the Z15104 B. caballi GenBank sequence.  相似文献   

12.
A total of 3552 Ixodes persulcatus from Sverdlovsk, Chelyabinsk, Novosibirsk, Irkutsk regions and Khabarovsk Territory were examined on the Ehrlichia and Anaplasma presence by nested PCR based on the 16S rRNA gene. Both Anaplasma phagocytophilum and Ehrlichia muris DNA were found in I. persulcatus in all studied regions. A. Phagocytophilum was detected in 1.3-6.3% of ticks and E. muris - in 2.0-14.1% of ticks. Moreover, "Candidatus Neoehrlichia mikurensis" DNA was found in 8 ticks collected in Novosibirsk, Irkutsk Regions and Khabarovsk Territory. Partial nucleotide sequences of 16S rRNA gene and groESL operone (1240-1300 bp) were determined for 65 samples of A. Phagocytophilum, 17 samples of E. muris and 4 samples of "Candidatus Neoehrlichia mikurensis". Nucleotide sequences of 16S rRNA gene and groESL operone of E. muris and "Candidatus Neoehrlichia mikurensis" were shown to be highly conservative, and nucleotide sequences of groESL operone of both E. muris and "Candidatus Neoehrlichia mikurensis" differed from the sequences found previously in other species of Ixodid tick. On the basis of analysis of the 16S rRNA gene and groESL operone sequences it was concluded that all revealed samples A. Phagocytophilum could be divided into 2 groups. GroESL operone sequences of A. Phagocytophilum from the first group were identical to each other but significantly differed from the known groESL operone sequences (less than 98.2% of similarity), whereas their 16S rRNA gene sequences were identical to the sequence of widely distributed and pathogenic for human A. Phagocytophilum genetic variant (CAHU-HGEl, GenBank AF093788) or differed from it by a single nucleotide substitution. The nucleotide sequences of groESL operone of A. Phagocytophilum from the second group differed from each other by 1-4 nucleotides and were closely related (99.2-99.4% of similarity) to the sequences of groESL operone ofA. phagocytophilum isolates found in Europe in Ixodes ricinus and roe deer. The nucleotide sequences of the 16S rRNA gene of A. Phagocytophilum from the second group were most similar to the sequence of the rare A. Phagocytophilum genetic variant previously found only in China (GenBank DQ342324).  相似文献   

13.
Seven Haemaphysalis ticks were found positive in PCR assay of gltA gene to detect the spotted fever group (SFG) rickettsiae DNA from 100 ticks. The nucleotide sequence of 16S rRNA gene was determined from 5 ticks and compared to those of other Rickettsia strains. The nucleotide sequence from 4 ticks showed high homologies (99.7 to 100%) with that of R. japonica YH, and that from 1 tick (tick no. 48) was identical with that of R. rickettsii R, suggesting that SFG rickettsiae exists in Korea. This is the first documentation of SFG rickettsiae in Korea.  相似文献   

14.
Borrelia burgdorferi sensu lato was obtained from adult ixodid ticks, Ixodes ovatus, collected in Nagano, Japan, and was named NT112. The genomic DNA was digested with enzymes, electrophoresed, blotted and hybridized with rRNA gene probes obtained from B. burgdorferi sensu stricto B31. The results showed that the borrelial chromosome contains a single rrs (16S rRNA gene) sequence and two copies of rrl/rrf (23S/5S rRNA genes) sequences. The rrl/rrf genes were tandemly repeated at intervals of 3.2 kb and were located separately from the rrs gene on the genome. Our findings indicate that the organization of rRNA genes in Borrelia from I. ovatus ticks is identical to that of B. burgdorferi sensu stricto.  相似文献   

15.
Bartonella species are gram-negative bacteria that infect erythrocytes, endothelial cells and macrophages, often leading to persistent blood-borne infections. Because of the ability of various Bartonella species to reside within erythrocytes of a diverse number of animal hosts, there is substantial opportunity for the potential uptake of these blood-borne bacteria by a variety of arthropod vectors that feed on animals and people. Five Bartonella species are transmitted by lice, fleas or sandflies. However, Bartonella DNA has been detected or Bartonella spp. have been cultured from numerous other arthropods. This review discusses Bartonella transmission by sandflies, lice and fleas, the potential for transmission by other vectors, and data supporting transmission by ticks. Polymerase chain reaction (PCR) or culture methods have been used to detect Bartonella in ticks, either questing or host-attached, throughout the world. Case studies and serological or molecular surveys involving humans, cats and canines provide indirect evidence supporting transmission of Bartonella species by ticks. Of potential clinical relevance, many studies have proposed co-transmission of Bartonella with other known tick-borne pathogens. Currently, critically important experimental transmission studies have not been performed for Bartonella transmission by many potential arthropod vectors, including ticks.  相似文献   

16.
Based on the results of RFLP-ribotyping, whole DNA/DNA hybridization and phylogenetic analysis of the 16S rRNA gene, we previously defined two genomic groups of spirochetes closely related to Borrelia burgdorferi sensu lato: group Hk501 for strains isolated from Ixodes tanuki ticks and group Ya501 for strains isolated from Ixodes turdus ticks. In this report, we propose that group Hk501 should be classified as Borrelia tanukii sp. nov. and group Ya501 as Borrelia turdae sp. nov. The alignment of previously published Borrelia 16S rRNA gene sequences led us to design species-specific PCR primer sets. The primers allowed the rapid identification of B. tanukii and B. turdae.  相似文献   

17.
Anaplasma phagocytophilum is an emerging tick-borne pathogen. Great genetic diversity of A. phagocytophilum has been described in animals and ticks. The present study is focused on the genetic variability of the groESL operon of A. phagocytophilum in human patients in Slovenia. During 1996–2008, there were 66 serologically confirmed patients with human granulocytic anaplasmosis. Of these, 46 were tested with a screening PCR for a small part of the 16S rRNA gene of A. phagocytophilum and 28 (60.9%) were positive. Positive samples were additionally tested with a PCR targeting the groESL operon and a larger fragment of the 16S rRNA gene. All amplicons were further sequenced and analyzed. The homology search and the alignment of the groESL sequences showed only one genetic variant. Sequence analysis of the 16S rRNA gene revealed 100% identity among amplicons. Slovenia is a small country with diverse climate, vegetation, and animal representatives. In previous studies in deer, dogs, and ticks, great diversity of the groESL operon was found. In contrast, in wild boar and in human patients from this study, only one genetic variant was detected. The results suggest that only one genetic variant might be pathogenic for humans or is competent enough to replicate in humans. To support this theory, other genetic markers and further studies need to be performed.  相似文献   

18.
J R Rawson  M T Clegg  K Thomas  C Rinehart  B Wood 《Gene》1981,16(1-3):11-19
The chloroplast rDNA genes of pearl millet (Pennisetum americanum) have been cloned and physically mapped. The chloroplast genome of the pearl millet contains two identical rRNA genes located on DNA sequences that are inverted with respect to one another and separated by 12 kb of single-copy DNA. The rRNA genes were positioned on a restriction endonuclease map by using as hybridization probes specific cloned rDNA sequences from the chloroplast DNA of the alga Euglena gracilis. The 16S and 23S rRNA genes were shown to be approx. 2 kb from one another, and the 5S RNA gene is immediately adjacent to the 23S tRNA gene.  相似文献   

19.
16S rRNA-based fingerprinting techniques allow rapid analyses of overall bacterial community structure but suffer from a lack of phylogenetic information hitherto retrievable from the short 16S rRNA gene sequences obtained from excised bands. An approach is presented that allows nearly complete 16S rRNA gene sequences to be retrieved for abundant components of the bacterial community as obtained by the community fingerprint, i.e. those reflected by major fingerprint bands. This was achieved by designing a pair of highly specific primers derived from the sequence of an excised band. Combined with universal 16S rRNA primers, these specific primers were applied directly to environmental DNA serving as template. This procedure allowed the generation of a nearly complete 16S rRNA gene sequence of the target taxon by specific polymerase chain reaction (PCR) followed by cycle sequencing down to a relative abundance of at least 1.5% of the environmental DNA. The procedure was exemplified for an epsilonproteobacterium related to Thiomicrospira denitrificans occurring in the central Baltic Sea. This approach is based only on PCR without any cloning step involved. It allows focussing on specific target taxa and is thus rather efficient. This approach should be applicable in general to 16S rRNA or 16S rRNA gene-based fingerprinting techniques and their respective environmental DNA.  相似文献   

20.
Copy number of the 16S rRNA gene in Rickettsia prowazekii.   总被引:3,自引:3,他引:0       下载免费PDF全文
The obligate intracellular parasite, Rickettsia prowazekii, is a slowly growing bacterium with a doubling time of 8 to 12 h. The copy number of the 16S rRNA gene in the rickettsial chromosome was determined to be one. Genomic DNA from R. prowazekii was digested either by a variety of restriction enzymes known not to cut at any site in the rickettsial 16S rRNA gene or by a combination of these noncutting enzymes and SmaI, which cuts the gene only once. Only one DNA fragment in these digests hybridized to a biotinylated probe containing a portion of the rickettsial 16S rRNA gene. Moreover, the density of the rickettsial 16S rRNA gene fragment after hybridization was equal to the density of each of the seven 16S rRNA gene fragments in Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号