首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antidromic responses of parasympathetic preganglionic neurons (PPN) in the sacral spinal cord evoked by stimulation of the pelvic nerve were studied in acute experiments on anaesthetized and immobilized cats by means of extracellular recording technique. The conduction velocities for preganglionic axons were calculated from the latency of these responses. It was shown that the upper limits of the conduction velocities for sacral parasympathetic axons extended the range (limit 12–15 m/sec) previously described: The velocities varied from 0.9 to 30.5 (mean 11.3±0.47) m/sec. According to the axonal conduction velocities the PPN were divided into four groups: the first group with conduction velocities from 0.9 to 3.0 m/sec; the second — 4.0–12; the third — 13–21; and the fourth group — 21–30 msec. PPN of the second group quantitatively prevailed — 57.6%, those of the third group represented 29.9%, and those of the first and fourth groups 6.8 and 6.2% of the total amount of PPN, respectively. Relative topic specialization of the second and third PPN groups was revealed. The density of PPN distribution in the intermediolateral region was higher in the second group than in the third one, while in ventral parts of the ventral horn concentration of the third PPN group was higher than that of other groups. The functional significance of PPN from the third group with fast-conducting axons (the conduction velocities correspond to those of group B fibers) is discussed.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 39–45, January–February, 1993.  相似文献   

2.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77–86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

3.
Responses arising in ventral root filaments and antidromic discharges of single sympathetic preganglionic neurons in the lateral horn of gray matter in segment L2 of the cat spinal cord were recorded during stimulation of the white rami communicantes in the same segment. Conduction velocities, thresholds, and refractory periods were determined for individual groups of sympathetic preganglionic fibers. Excitation was conducted more slowly along the intramedullary part of the axons of some sympathetic neurons than along the extramedullary part. In a third group of neurons studied the second antidromic discharge appeared in response to paired stimulation if the interstimulus interval was appreciably longer than their refractory period. It is postulated that axons of sympathetic preganglionic neurons in the lumber spinal cord have a thin intramedullary part and are supplied with recurrent collaterals.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 2, pp. 143–151, March–April, 1974.  相似文献   

4.
The displacement of immature neurons from their place of origin in the germinal epithelium toward their adult positions in the nervous system appears to involve migratory pathways or guides. While the importance of radial glial fibers in this process has long been recognized, data from recent investigations have suggested that other mechanisms might also play a role in directing the movement of young neurons. We have labeled autonomic preganglionic cells by microinjections of horseradish peroxidase (HRP) into the sympathetic chain ganglia of embryonic rats in order to study the migration and differentiation of these spinal cord neurons. Our results, in conjunction with previous observations, suggest that the migration pattern of preganglionic neurons can be divided into three distinct phases. In the first phase, the autonomic motor neurons arise in the ventral ventricular zone and migrate radially into the ventral horn of the developing spinal cord, where, together with somatic motor neurons, they form a single, primitive motor column (Phelps P. E., Barber R. P., and Vaughn J. E. (1991). J. Comp. Neurol. 307:77-86). During the second phase, the autonomic motor neurons separate from the somatic motor neurons and are displaced dorsally toward the intermediate spinal cord. When the preganglionic neurons reach the intermediolateral (IML) region, they become progressively more multipolar, and many of them undergo a change in alignment, from a dorsoventral to a mediolateral orientation. In the third phase of autonomic motor neuron development, some of these cells are displaced medially, and occupy sites between the IML and central canal. The primary and tertiary movements of the preganglionic neurons are in alignment with radial glial processes in the embryonic spinal cord, an arrangement that is consistent with a hypothesis that glial elements might guide autonomic motor neurons during these periods of development. In contrast, during the second phase, the dorsal translocation of preganglionic neurons occurs in an orientation perpendicular to radial glial fibers, indicating that glial elements are not involved in the secondary migration of these cells. The results of previous investigations have provided evidence that, in addition to glial processes, axonal pathways might provide a substrate for neuronal migration. Logically, therefore, it is possible that the secondary dorsolateral translocation of autonomic preganglionic neurons could be directed along early forming circumferential axons of spinal association interneurons, and this hypothesis is supported by the fact that such fibers are appropriately arrayed in both developmental time and space to guide this movement.  相似文献   

5.
6.
7.
Chronic recording techniques in freely walking cats have been used to sample unitary activity from most large myelinated afferent classes. Cutaneous mechanoreceptors are highly sensitive and generate regular activity patterns predictable from their modalities. Knee joint afferents can fire briskly midrange locomotory movements but appear to be influenced by factors other than joint angle. Golgi tendon organs generate activity consistent with sensitivity to active muscle tension. Muscle spindle afferents do not appear to conform to any single functional pattern for all muscles. It is suggested that degree and rate of stretch are sensed by spindles (possibly under dynamic fusimotor bias) in extensor muscles which normally undergo isometric or lengthening contractions whereas rapidly modulated static fusimotor activity is employed to preserve spindle activity during the rapidly shortening contractions of flexor muscles. Both patterns may be represented in different spindles of bifunctional, biarticular muscles such as rectus femoris and sartorius.  相似文献   

8.
The spinal cord can generate motor patterns underlying several kinds of limb movements. Many spinal interneurons are multifunctional, contributing to multiple limb movements, but others are specialized. It is unclear whether anatomical distributions of activated neurons differ for different limb movements. We examined distributions of activated neurons for locomotion and scratching using an activity-dependent dye. Adult turtles were stimulated to generate repeatedly forward swimming, rostral scratching, pocket scratching, or caudal scratching motor patterns, while sulforhodamine 101 was applied to the spinal cord. Sulforhodamine-labeled neurons were widely distributed rostrocaudally, dorsoventrally, and mediolaterally after each motor pattern, concentrated bilaterally in the deep dorsal horn, the lateral intermediate zone, and the dorsal to middle ventral horn. Labeled neurons were common in all hindlimb enlargement segments and the pre-enlargement segment following swimming and scratching, but a significantly higher percentage were in the rostral segments following swimming than rostral scratching. These findings suggest that largely the same spinal regions are activated during swimming and scratching, but there are some differences that may indicate locations of behaviorally specialized neurons. Finally, the substantial inter-animal variability following a single kind of motor pattern may indicate that essentially the same motor output is generated by anatomically variable networks.  相似文献   

9.
Summary Explants and dissociated cells from normal adult spinal cord and regenerating cord of the teleostApteronotus albifrons were grown in vitro for periods of 8 to 12 wk. During this time the neurons showed extensive neurite outgrowth. Neurite outgrowth from tissue explants and dissociated cells of regenerated spinal cord starts sooner and is more profuse than that from normal (unregenerated) cord. Neurite outgrowth is maximized by using adhesive substrata and a high density of explants or dissociated cells. Inasmuch asApteronotus does regenerate its spinal cord naturally after injury, whereas mammals do not, this culture system will be useful to study factors that control (permit) regeneration of spinal neurons in this adult vertebrate.  相似文献   

10.
In animal experiments with spinal lesions, phylo- and ontogenetic features of development of plasticity in the CNS of mammals and high reliability of the CNS have been demonstrated. It has been shown that possibilities of compensation processes and the upper limit of plasticity increase in phylogeny. Much attention has been attached to the higher regions of the CNS and hypothalamus as well as to ecological and biological characteristics of animals. Changes in the structure and functions of the damaged spinal cord have been studied. The significance of sympathetic innervation and involvement of ATP and ATPase in the spinal cord functioning after injury have been demonstrated. The article reviews the investigations of the role of the cicatrixce and some endocrine glands (adrenal glands, pancreas, and thyroid gland) performed at the laboratory. In phylogeny, high plasticity has been demonstrated at early ontogenetic stages. Enzymes have been shown to facilitate recovery of spinal functions after injury.  相似文献   

11.
In experiments on spontaneously active neurones of the isolated CNS of pond snail, under contingent stimulation with selective auto-reinforcement of interpulse intervals longer than their mean background value, 70 per cent of neurones were capable of adaptive rearrangements of the initial firing frequency, leading to frequency minimization or maximization of influences applied to them. After control rhythmic stimulation, usually no substantial changes of spontaneous activity were observed. The detected phenomena of initial transformation of the spontaneous impulse activity are considered as a cellular analogue of the instrumental conditioned reflex.  相似文献   

12.
13.

Background  

Immediately after damage to the nervous system, a cascade of physical, physiological, and anatomical events lead to the collapse of neuronal function and often death. This progression of injury processes is called "secondary injury." In the spinal cord and brain, this loss in function and anatomy is largely irreversible, except at the earliest stages. We investigated the most ignored and earliest component of secondary injury. Large bioelectric currents immediately enter damaged cells and tissues of guinea pig spinal cords. The driving force behind these currents is the potential difference of adjacent intact cell membranes. For perhaps days, it is the biophysical events caused by trauma that predominate in the early biology of neurotrauma.  相似文献   

14.
The localization of the sympathetic postganglionic and parasympathetic preganglionic neurons innervating the monkey heart were investigated through retrograde axonal transport with horseradish peroxidase (HRP). HRP (4 mg or 30 mg) was injected into the subepicardial and myocardial layers in four different cardiac regions. The animals were euthanized 84-96 hours later and fixed by paraformaldehyde perfusion via the left ventricle. The brain stem and the paravertebral sympathetic ganglia from the superior cervical, middle cervical, and stellate ganglia down to the T9 ganglia were removed and processed for HRP identification. Following injection of HRP into the apex of the heart, the sinoatrial nodal region, or the right ventricle, HRP-labeled sympathetic neurons were found exclusively in the right superior cervical ganglion (64.8%) or in the left superior cervical ganglion (35%). Fewer labeled cells were found in the right stellate ganglia. After HRP injection into the left ventricle, labeled sympathetic cells were found chiefly in the left superior cervical ganglion (51%) or in the right superior cervical ganglion (38.6%); a few labeled cells were seen in the stellate ganglion bilaterally and in the left middle cervical ganglion. Also, in response to administration of HRP into the anterior part of the apex, anterior middle part of the right ventricle, posterior upper part of the left ventricle, or sinoatrial nodal region, HRP-labeled parasympathetic neurons were found in the nucleus ambiguus on both the right (74.8%) and left (25.2%) sides. No HRP-labeled cells were found in the dorsal motor nucleus of the vagus on either side.  相似文献   

15.
Extracts of rat skeletal muscle contain neurotrophic factors which stimulate the development of choline acetyltransferase in embryonic day 14 rat spinal cord cultures. The trophic activity does not bind heparin-Sepharose or lectin affinity columns. However, mild acid treatment separates the trophic activity into soluble and insoluble fractions. The acid-insoluble activity has been purified 5000-fold to apparent homogeneity using preparative sodium dodecyl sulfate gel electrophoresis to achieve final purification. The purified factor migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, with an apparent molecular mass of 20 kDa and a pI of 4.8. The activity and apparent molecular weight of the purified factor are unaltered by treatment with reducing agents or incubation in acidic conditions. Activity, however, is destroyed by heating or protease treatment. Thus, the factor appears to be a single polypeptide without significant levels of glycosylation or charge microheterogeneity. These results represent the first purification of a neurotrophic factor from skeletal muscle. The physical properties and amino acid composition of this factor differ from those of nerve growth factor and heparin-binding growth factors, as well as from the neurotrophic factor from heart cell conditioned medium which induces cholinergic development in sympathetic neurons.  相似文献   

16.
Transient and steady-state components of L-glutamate-activated membrane currents were investigated using intracellular perfusion, voltage clamp, and concentration clamp techniques in spinal cord neurons of 6–11 day chick embryos. Hill's coefficient was found to equal 1 for transient and 2 for steady-state components. It was shown that the L-glutamate-activated receptors are present, which appear in the membrane of spinal neurons at the early stages of development.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 251–258, March–April, 1987.  相似文献   

17.
By means of morphological methods dynamics of the spinal cord development in 14-day-old rat embryos implanted into the sciatic nerve of mature rats have been studied. The implants preserve their viability during 5 months after the operation and their cells continue to differentiate beginning from neuroepithelial cells and neuroblasts up to young and mature neurons with histotypical signs of motoneurons. In 6 h and 1 day after transplantation the neuroepithelial cells continue their mitotic division. In 3 days, however, their mitotic activity decreases essentially and differentiation of neuroblasts begins. In 7 days the implants consist mainly of differentiated neuroblasts and glial cells. As demonstrates electron microscopy, in 30 days after the operation in the implants there is a well developed neuropil, where mature neurons, myelinated axons are situated and synaptic contacts are present.  相似文献   

18.
Highly enriched cultures of chick embryo spinal cord neurons synthesize and secrete a protein which is immunoprecipitable by anti-ovotransferrin. Ovotransferrin, an iron-binding glycoprotein of Mr 80 000, is also shown to stimulate in vitro myogenesis of cultured chick embryo myotubes as measured by saturable dose-dependent increase in acetylcholine receptors. This effect is probably dependent on ovotransferrin's ability to donate iron to the cells. In many respects ovotransferrin is similar to 'sciatin', a myotrophic protein isolated from chicken sciatic nerves.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号