首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous models of cardiac Ca2+ sparks have assumed that Ca2+ currents through the Ca2+ release units (CRUs) were approximately 1-2 pA, producing sparks with peak fluorescence ratio (F/F(0)) of approximately 2.0 and a full-width at half maximum (FWHM) of approximately 1 microm. Here, we present actual Ca2+ sparks with peak F/F(0) of >6 and a FWHM of approximately 2 microm, and a mathematical model of such sparks, the main feature of which is a much larger underlying Ca2+ current. Assuming infinite reaction rates and no endogenous buffers, we obtain a lower bound of approximately 11 pA needed to generate a Ca2+ spark with FWHM of 2 microm. Under realistic conditions, the CRU current must be approximately 20 pA to generate a 2- microm Ca2+)spark. For currents > or =5 pA, the computed spark amplitudes (F/F(0)) are large (approximately 6-12 depending on buffer model). We considered several factors that might produce sparks with FWHM approximately 2 microm without using large currents. Possible protein-dye interactions increased the FWHM slightly. Hypothetical Ca2+ "quarks" had little effect, as did blurring of sparks by the confocal microscope. A clusters of CRUs, each producing 10 pA simultaneously, can produce sparks with FWHM approximately 2 microm. We conclude that cardiac Ca2+ sparks are significantly larger in peak amplitude than previously thought, that such large Ca2+ sparks are consistent with the measured FWHM of approximately 2 microm, and that the underlying Ca2+ current is in the range of 10-20 pA.  相似文献   

2.
Calcium (Ca) sparks are elementary events of biological Ca signaling. A normal Ca spark has a brief duration in the range of 10 to 100 ms, but long-lasting sparks with durations of several hundred milliseconds to seconds are also widely observed. Experiments have shown that the transition from normal to long-lasting sparks can occur when ryanodine receptor (RyR) open probability is either increased or decreased. Here, we demonstrate theoretically and computationally that long-lasting sparks emerge as a collective dynamical behavior of the network of diffusively coupled Ca release units (CRUs). We show that normal sparks occur when the CRU network is monostable and excitable, while long-lasting sparks occur when the network dynamics possesses multiple metastable attractors, each attractor corresponding to a different spatial firing pattern of sparks. We further highlight the mechanisms and conditions that produce long-lasting sparks, demonstrating the existence of an optimal range of RyR open probability favoring long-lasting sparks. We find that when CRU firings are sparse and sarcoplasmic reticulum (SR) Ca load is high, increasing RyR open probability promotes long-lasting sparks by potentiating Ca-induced Ca release (CICR). In contrast, when CICR is already strong enough to produce frequent firings, decreasing RyR open probability counter-intuitively promotes long-lasting sparks by decreasing spark frequency. The decrease in spark frequency promotes intra-SR Ca diffusion from neighboring non-firing CRUs to the firing CRUs, which helps to maintain the local SR Ca concentration of the firing CRUs above a critical level to sustain firing. In this setting, decreasing RyR open probability further suppresses long-lasting sparks by weakening CICR. Since a long-lasting spark terminates via the Kramers’ escape process over a potential barrier, its duration exhibits an exponential distribution determined by the barrier height and noise strength, which is modulated differently by different ways of altering the Ca release flux strength.  相似文献   

3.
sparks and waves play important roles in calcium release and calcium propagation during the excitation-contraction (EC) coupling process in cardiac myocytes. Although the classical Fick’s law is widely used to model sparks and waves in cardiac myocytes, it fails to reasonably explain the full-width at half maximum(FWHM) paradox. However, the anomalous subdiffusion model successfully reproduces sparks of experimental results. In this paper, in the light of anomalous subdiffusion of sparks, we develop a mathematical model of calcium wave in cardiac myocytes by using stochastic release of release units (CRUs). Our model successfully reproduces calcium waves with physiological parameters. The results reveal how concentration waves propagate from an initial firing of one CRU at a corner or in the middle of considered region, answer how large in magnitude of an anomalous spark can induce a wave. With physiological currents (2pA) through CRUs, it is shown that an initial firing of four adjacent CRUs can form a wave. Furthermore, the phenomenon of calcium waves collision is also investigated.  相似文献   

4.
In sinoatrial node cells of the heart, beating rate is controlled, in part, by local Ca2(+) releases (LCRs) from the sarcoplasmic reticulum, which couple to the action potential via electrogenic Na(+)/Ca2(+) exchange. We observed persisting, roughly periodic LCRs in depolarized rabbit sinoatrial node cells (SANCs). The features of these LCRs were reproduced by a numerical model consisting of a two-dimensional array of stochastic, diffusively coupled Ca2(+) release units (CRUs) with fixed refractory period. Because previous experimental studies showed that β-adrenergic receptor stimulation increases the rate of Ca2(+) release through each CRU (dubbed I(spark)), we explored the link between LCRs and I(spark) in our model. Increasing the CRU release current I(spark) facilitated Ca2(+)-induced-Ca2(+) release and local recruitment of neighboring CRUs to fire more synchronously. This resulted in a progression in simulated LCR size (from sparks to wavelets to global waves), LCR rhythmicity, and decrease of LCR period that parallels the changes observed experimentally with β-adrenergic receptor stimulation. The transition in LCR characteristics was steeply nonlinear over a narrow range of I(spark), resembling a phase transition. We conclude that the (partial) periodicity and rate regulation of the "Calcium clock" in SANCs are emergent properties of the diffusive coupling of an ensemble of interacting stochastic CRUs. The variation in LCR period and size with I(spark) is sufficient to account for β-adrenergic regulation of SANC beating rate.  相似文献   

5.
The elementary events of excitation-contraction coupling in heart muscle are Ca2+ sparks, which arise from one or more ryanodine receptors in the sarcoplasmic reticulum (SR). Here a simple numerical model is constructed to explore Ca2+ spark formation, detection, and interpretation in cardiac myocytes. This model includes Ca2+ release, cytosolic diffusion, resequestration by SR Ca2+-ATPases, and the association and dissociation of Ca2+ with endogenous Ca2+-binding sites and a diffusible indicator dye (fluo-3). Simulations in a homogeneous, isotropic cytosol reproduce the brightness and the time course of a typical cardiac Ca2+ spark, but underestimate its spatial size (approximately 1.1 micron vs. approximately 2.0 micron). Back-calculating [Ca2+]i by assuming equilibrium with indicator fails to provide a good estimate of the free Ca2+ concentration even when using blur-free fluorescence data. A parameter sensitivity study reveals that the mobility, kinetics, and concentration of the indicator are essential determinants of the shape of Ca2+ sparks, whereas the stationary buffers and pumps are less influential. Using a geometrically more complex version of the model, we show that the asymmetric shape of Ca2+ sparks is better explained by anisotropic diffusion of Ca2+ ions and indicator dye rather than by subsarcomeric inhomogeneities of the Ca2+ buffer and transport system. In addition, we examine the contribution of off-center confocal sampling to the variance of spark statistics.  相似文献   

6.
Spontaneous Ca2+-events were imaged in myocytes within intact retinal arterioles (diameter <40 microm) freshly isolated from rat eyes. Ca2+-sparks were often observed to spread across the width of these small cells, and could summate to produce prolonged Ca2+-oscillations and contraction. Application of cyclopiazonic acid (20 microM) transiently increased spark frequency and oscillation amplitude, but inhibited both sparks and oscillations within 60s. Both ryanodine (100 microM) and tetracaine (100 microM) reduced the frequency of sparks and oscillations, while tetracaine also reduced oscillation amplitude. None of these interventions affected spark amplitude. Nifedipine, which blocks store filling independently of any action on L-type Ca2+-channels in these cells, reduced the frequency and amplitude of both sparks and oscillations. Removal of external [Ca2+] (1mM EGTA) also reduced the frequency of sparks and oscillations but these reductions were slower in onset than those in the presence of tetracaine or cyclopiazonic acid. Cyclopiazonic acid, nifedipine and low external [Ca2+] all reduced SR loading, as indicated by the amplitude of caffeine evoked Ca2+-transients. This study demonstrates for the first time that spontaneous Ca2+-events in small arterioles of the eye result from activation of ryanodine receptors in the SR and suggests that this activation is not tightly coupled to Ca2+-influx. The data also supports a model in which Ca2+-sparks act as building blocks for more prolonged, global Ca2+-signals.  相似文献   

7.
We have compared the effects of the sarcoplasmic reticulum (SR) Ca(2+) release inhibitor, ruthenium red (RR), on single ryanodine receptor (RyR) channels in lipid bilayers, and on Ca(2+) sparks in permeabilized rat ventricular myocytes. Ruthenium red at 5 microM inhibited the open probability (P(o)) of RyRs approximately 20-50-fold, without significantly affecting the conductance or mean open time of the channel. At the same concentration, RR inhibited the frequency of Ca(2+) sparks in permeabilized myocytes by approximately 10-fold, and reduced the amplitude of large amplitude events (with most probable localization on the line scan) by approximately 3-fold. According to our theoretical simulations, performed with a numerical model of Ca(2+) spark formation, this reduction in Ca(2+) spark amplitude corresponds to an approximately 4-fold decrease in Ca(2+) release flux underlying Ca(2+) sparks. Ruthenium red (5 microM) increased the SR Ca(2+) content by approximately 2-fold (from 151 to 312 micromol/l cytosol). Considering the degree of inhibition of local Ca(2+) release events, the increase in SR Ca(2+) load by RR, and the lack of effects of RR on single RyR open time and conductance, we have estimated that Ca(2+) sparks under normal conditions are generated by openings of at least 10 single RyRs.  相似文献   

8.
The interpretation of confocal line-scan images of local [Ca2+]i transients (such as Ca2+ sparks in cardiac muscle) is complicated by uncertainties in the position of the origin of the Ca2+ spark (relative to the scan line) and by the dynamics of Ca(2+)-dye interactions. An investigation of the effects of these complications modeled the release, diffusion, binding, and uptake of Ca2+ in cardiac cells (producing a theoretical Ca2+ spark) and image formation in a confocal microscope (after measurement of its point-spread function) and simulated line-scan images of a theoretical Ca2+ spark (when it was viewed from all possible positions relative to the scan line). In line-scan images, Ca2+ sparks that arose in a different optical section or with the site of origin displaced laterally from the scan line appeared attenuated, whereas their rise times slowed down only slightly. These results indicate that even if all Ca2+ sparks are perfectly identical events, except for their site of origin, there will be an apparent variation in the amplitude and other characteristics of Ca2+ sparks as measured from confocal line-scan images. The frequency distributions of the kinetic parameters (i.e., peak amplitude, rise time, fall time) of Ca2+ sparks were calculated for repetitive registration of stereotyped Ca2+ sparks in two experimental situations: 1) random position of the scan line relative to possible SR Ca(2+)-release sites and 2) fixed position of the scan line going through a set of possible SR Ca(2+)-release sites. The effects of noise were incorporated into the model, and a visibility function was proposed to account for the subjective factors that may be involved in the evaluation of Ca(2+)-spark image parameters from noisy experimental recordings. The mean value of the resulting amplitude distributions underestimates the brightness of in-focus Ca2+ sparks because large numbers of out-of-focus Ca2+ sparks are detected (as small Ca2+ sparks). The distribution of peak amplitudes may split into more than one subpopulation even when one is viewing stereotyped Ca2+ sparks because of the discrete locations of possible SR Ca(2+)-release sites in mammalian ventricular heart cells.  相似文献   

9.
Simulation of calcium sparks in cut skeletal muscle fibers of the frog   总被引:7,自引:0,他引:7  
Spark mass, the volume integral of Delta F/F, was investigated theoretically and with simulations. These studies show that the amount of Ca2+ bound to fluo-3 is proportional to mass times the total concentration of fluo-3 ([fluo-3T]); the proportionality constant depends on resting Ca2+ concentration ([Ca2+]R). In the simulation of a Ca2+ spark in an intact frog fiber with [fluo-3T] = 100 microM, fluo-3 captures approximately one-fourth of the Ca2+ released from the sarcoplasmic reticulum (SR). Since mass in cut fibers is several times that in intact fibers, both with similar values of [fluo-3T] and [Ca2+]R, it seems likely that SR Ca2+ release is larger in cut fiber sparks or that fluo-3 is able to capture a larger fraction of the released Ca2+ in cut fibers, perhaps because of reduced intrinsic Ca2+ buffering. Computer simulations were used to identify these and other factors that may underlie the differences in mass and other properties of sparks in intact and cut fibers. Our spark model, which successfully simulates calcium sparks in intact fibers, was modified to reflect the conditions of cut fiber measurements. The results show that, if the protein Ca2+-buffering power of myoplasm is the same as that in intact fibers, the Ca2+ source flux underlying a spark in cut fibers is 5-10 times that in intact fibers. Smaller source fluxes are required for less buffer. In the extreme case in which Ca2+ binding to troponin is zero, the source flux needs to be 3-5 times that in intact fibers. An increased Ca2+ source flux could arise from an increase in Ca2+ flux through one ryanodine receptor (RYR) or an increase in the number of active RYRs per spark, or both. These results indicate that the gating of RYRs, or their apparent single channel Ca2+ flux, is different in frog cut fibers--and, perhaps, in other disrupted preparations--than in intact fibers.  相似文献   

10.
Ca2+ sparks arise from the stochastic opening of spatially discrete clusters of ryanodine receptors called a Ca2+ release unit (CRU). If the RyR clusters were not spatially separated, then Ca2+ released from one RyR would immediately diffuse to its neighbor and lead to uncontrolled, runaway Ca2+ release throughout the cell. While physical separation provides some isolation from neighbors, CRUs are not incommunicado. When inter-neighbor interactions become large enough, Ca2+ waves spontaneously emerge. A more circumscribed interaction shows up in high-speed two-dimensional confocal images as jumping Ca2+ sparks that seem to be sequentially activated along the Z-line and across Z-lines. However, since Ca2+ sparks are stochastic events how can we tell whether two sparks occurring close together in space and time are causally related or appeared simply by coincidence? Here we develop a mathematical method to disentangle cause and coincidence in a statistical sense. From our analysis we derive three fundamental properties of Ca2+ spark generation: 1), the “intrinsic” spark frequency, the spark frequency one would observe if the CRUs were incommunicado; 2), the coupling strength, which measures how strongly one CRU affects another; and 3), the range over which the communication occurs. These parameters allow us to measure the effect RyR regulators have on the intrinsic activity of CRUs and on the coupling between them.  相似文献   

11.
Ryanodine receptors (RyRs) mediate calcium (Ca)-induced Ca release and intracellular Ca homeostasis. In a cardiac myocyte, RyRs group into clusters of variable size from a few to several hundred RyRs, creating a spatially nonuniform intracellular distribution. It is unclear how heterogeneity of RyR cluster size alters spontaneous sarcoplasmic reticulum (SR) Ca releases (Ca sparks) and arrhythmogenic Ca waves. Here, we tested the impact of heterogeneous RyR cluster size on the initiation of Ca waves. Experimentally, we measured RyR cluster sizes at Ca spark sites in rat ventricular myocytes and further tested functional impacts using a physiologically detailed computational model with spatial and stochastic intracellular Ca dynamics. We found that the spark frequency and amplitude increase nonlinearly with the size of RyR clusters. Larger RyR clusters have lower SR Ca release threshold for local Ca spark initiation and exhibit steeper SR Ca release versus SR Ca load relationship. However, larger RyR clusters tend to lower SR Ca load because of the higher Ca leak rate. Conversely, smaller clusters have a higher threshold and a lower leak, which tends to increase SR Ca load. At the myocyte level, homogeneously large or small RyR clusters limit Ca waves (because of low load for large clusters but low excitability for small clusters). Mixtures of large and small RyR clusters potentiates Ca waves because the enhanced SR Ca load driven by smaller clusters enables Ca wave initiation and propagation from larger RyR clusters. Our study suggests that a spatially heterogeneous distribution of RyR cluster size under pathological conditions may potentiate Ca waves and thus afterdepolarizations and triggered arrhythmias.  相似文献   

12.
Woo SH  Risius T  Morad M 《Cell calcium》2007,41(4):397-403
Atrial myocytes that lack t-tubules appear to have two functionally separate sarcoplasmic Ca2+ stores: a peripheral store associated with plasmalemmal L-type calcium channels and a central store with no apparent proximity to L-type calcium channels. Here we describe a set of calcium sparks and waves that are triggered by puffing of pressurized (200-400 mmH2O) bathing solutions onto resting isolated rat atrial myocytes. Puffing of pressurized (200 mmH2O) solutions, identical to those bathing the myocytes from distances of approximately 150 microm onto the surface of a single myocyte triggered or enhanced spontaneously occurring peripheral sparks by five- to six-fold and central Ca2+ sparks by two- to three-fold, without altering the unitary spark properties. Exposure to higher pressure flows (400 mmH2O) often triggered longitudinally spreading Ca2+ waves. These results suggest that pressurized flows may directly modulate Ca2+ signaling of atrial myocytes by activating the intracellular Ca2+ release sites.  相似文献   

13.
A Ca(2+) spark arises when a cluster of sarcoplasmic reticulum (SR) channels (ryanodine receptors or RyRs) opens to release calcium in a locally regenerative manner. Normally triggered by Ca(2+) influx across the sarcolemmal or transverse tubule membrane neighboring the cluster, the Ca(2+) spark has been shown to be the elementary Ca(2+) signaling event of excitation-contraction coupling in heart muscle. However, the question of how the Ca(2+) spark terminates remains a central, unresolved issue. Here we present a new model, "sticky cluster," of SR Ca(2+) release that simulates Ca(2+) spark behavior and enables robust Ca(2+) spark termination. Two newly documented features of RyR behavior have been incorporated in this otherwise simple model: "coupled gating" and an opening rate that depends on SR lumenal [Ca(2+)]. Using a Monte Carlo method, local Ca(2+)-induced Ca(2+) release from clusters containing between 10 and 100 RyRs is modeled. After release is triggered, Ca(2+) flux from RyRs diffuses into the cytosol and binds to intracellular buffers and the fluorescent Ca(2+) indicator fluo-3 to produce the model Ca(2+) spark. Ca(2+) sparks generated by the sticky cluster model resemble those observed experimentally, and Ca(2+) spark duration and amplitude are largely insensitive to the number of RyRs in a cluster. As expected from heart cell investigation, the spontaneous Ca(2+) spark rate in the model increases with elevated cytosolic or SR lumenal [Ca(2+)]. Furthermore, reduction of RyR coupling leads to prolonged model Ca(2+) sparks just as treatment with FK506 lengthens Ca(2+) sparks in heart cells. This new model of Ca(2+) spark behavior provides a "proof of principle" test of a new hypothesis for Ca(2+) spark termination and reproduces critical features of Ca(2+) sparks observed experimentally.  相似文献   

14.
Spontaneous Ca(2+)-sparks were imaged using confocal line scans of fluo-4 loaded myocytes in retinal arterioles. Tetracaine produced concentration-dependent decreases in spark frequency, and modified the spatiotemporal characteristics of residual sparks. Tetracaine (10 microM) reduced the rate of rise but prolonged the average rise time so that average spark amplitude was unaltered. The mean half-time of spark decay was also unaffected, suggesting that spark termination, although delayed, remained well synchronized. Sparks spread transversely across the myocytes in these vessels, and the speed of spread within individual sparks was slowed by approximately 60% in 10 microM tetracaine, as expected if the spark was propagated across the cell but the average P(o) for RyRs was reduced. Staining of isolated vessels with BODIPY-ryanodine and di-4-ANEPPS showed that RyRs were located both peripherally, adjacent to the plasma membrane, and in transverse extensions of the SR from one side of the cell to the other. Immuno-labelling of retinal flat mounts demonstrated the presence RyR(2) in arteriole smooth muscle but not RyR(1). We conclude that Ca(2+)-sparks in smooth muscle can result from sequential activation of RyRs distributed over an area of several microm(2), rather than from tightly clustered channels as in striated muscle.  相似文献   

15.
In cardiac muscle, Ca2+ is released from the sarcoplasmic reticulum (SR) in units called Ca2+ sparks. Ca2+ spark characteristics have been studied almost entirely at room temperature. This study compares characteristics of spontaneous sparks detected with fluo 3 in resting mouse ventricular myocytes at 22 and 37 degrees C. The incidence and frequency of Ca2+ sparks decreased dramatically at 37 degrees C compared with 22 degrees C. Also, spark amplitudes and times to peak were significantly reduced at 37 degrees C. In contrast, spatial width and decay times were unchanged. During field stimulation, peak spatially averaged transients were similar at 22 and 37 degrees C, and experiments with fura 2 demonstrated that diastolic and systolic Ca2+ concentrations were unchanged. However, SR Ca2+ content decreased significantly at 37 degrees C. Restoration of SR Ca2+ by superfusion with 5 mM Ca2+ increased spark frequency but did not reverse the effects of temperature on spark parameters. Thus effects of temperature on spark frequency may reflect changes in SR stores, whereas changes in spark amplitude and rise time may reflect known effects of temperature on ryanodine receptor function.  相似文献   

16.
The diastolic membrane potential (Vm) can be hyperpolarized or depolarized by various factors such as hyperkalemia or hypokalemia in the long term, or by delayed afterdepolarizations in the short term. In this study, we investigate how Vm affects Ca sparks and waves. We use a physiologically detailed mathematical model to investigate individual factors that affect Ca spark generation and wave propagation. We focus on the voltage range of −90 ∼ −70 mV, which is just below the Vm for sodium channel activation. We find that Vm depolarization promotes Ca wave propagation and hyperpolarization prevents it. This finding is directly validated in voltage clamp experiments with Ca waves using isolated rat ventricular myocytes. Ca transport by the sodium-calcium exchanger (NCX) is determined by Vm as well as Na and Ca concentrations. Depolarized Vm reduces NCX-mediated efflux, elevating [Ca]i, and thus promoting Ca wave propagation. Moreover, depolarized Vm promotes spontaneous Ca releases that can cause initiation of multiple Ca waves. This indicates that during delayed afterdepolarizations, Ca release units (CRUs) interact with not just the immediately adjacent CRUs via Ca diffusion, but also further CRUs via fast (∼0.1 ms) changes in Vm mediated by the voltage and Ca-sensitive NCX. This may contribute significantly to synchronization of Ca waves among multiple cells in tissue.  相似文献   

17.
Ca2+ sparks of membrane-permeabilized rat muscle cells were analyzed to derive properties of their sources. Most events identified in longitudinal confocal line scans looked like sparks, but 23% (1,000 out of 4,300) were followed by long-lasting embers. Some were preceded by embers, and 48 were "lone embers." Average spatial width was approximately 2 microm in the rat and 1.5 microm in frog events in analogous solutions. Amplitudes were 33% smaller and rise times 50% greater in the rat. Differences were highly significant. The greater spatial width was not a consequence of greater open time of the rat source, and was greatest at the shortest rise times, suggesting a wider Ca2+ source. In the rat, but not the frog, spark width was greater in scans transversal to the fiber axis. These features suggested that rat spark sources were elongated transversally. Ca2+ release was calculated in averages of sparks with long embers. Release current during the averaged ember started at 3 or 7 pA (depending on assumptions), whereas in lone embers it was 0.7 or 1.3 pA, which suggests that embers that trail sparks start with five open channels. Analysis of a spark with leading ember yielded a current ratio ranging from 37 to 160 in spark and ember, as if 37-160 channels opened in the spark. In simulations, 25-60 pA of Ca2+ current exiting a point source was required to reproduce frog sparks. 130 pA, exiting a cylindric source of 3 microm, qualitatively reproduced rat sparks. In conclusion, sparks of rat muscle require a greater current than frog sparks, exiting a source elongated transversally to the fiber axis, constituted by 35-260 channels. Not infrequently, a few of those remain open and produce the trailing ember.  相似文献   

18.
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.  相似文献   

19.
The properties of Ca(2+) sparks in frog intact skeletal muscle fibers depolarized with 13 mM [K(+)] Ringer's are well described by a computational model with a Ca(2+) source flux of amplitude 2.5 pA (units of current) and duration 4.6 ms (18 degrees C; Model 2 of Baylor et al., 2002). This result, in combination with the values of single-channel Ca(2+) current reported for ryanodine receptors (RyRs) in bilayers under physiological ion conditions, 0.5 pA (Kettlun et al., 2003) to 2 pA (Tinker et al., 1993), suggests that 1-5 RyR Ca(2+) release channels open during a voltage-activated Ca(2+) spark in an intact fiber. To distinguish between one and greater than one channel per spark, sparks were measured in 8 mM [K(+)] Ringer's in the absence and presence of tetracaine, an inhibitor of RyR channel openings in bilayers. The most prominent effect of 75-100 microM tetracaine was an approximately sixfold reduction in spark frequency. The remaining sparks showed significant reductions in the mean values of peak amplitude, decay time constant, full duration at half maximum (FDHM), full width at half maximum (FWHM), and mass, but not in the mean value of rise time. Spark properties in tetracaine were simulated with an updated spark model that differed in minor ways from our previous model. The simulations show that (a) the properties of sparks in tetracaine are those expected if tetracaine reduces the number of active RyR Ca(2+) channels per spark, and (b) the single-channel Ca(2+) current of an RyR channel is 相似文献   

20.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号