首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
This study describes the synthesis, receptor binding characteristics, and some behavioral effects of p-bromoacetamidoprocaine (BAP), a new affinity ligand for brain muscarinic and nicotinic cholinergic receptors. The reversible binding of [3H]QNB to rat brain membranes was inhibited in a concentration dependent and saturable manner by both procaine and BAP, with Ki values of 4×10–6 and 3×10–7 M, respectively, and complete inhibition at 1×10–5 M. Both procaine and BAP, although at much concentrations, inhibited the binding of [3H]methylcarbamylcholine in a concentration dependent manner, with Ki values of 5×10–5 and 1×10–5 M, respectively, and complete inhibition for both at 1×10–3 M. Plots of the % irreversible inhibition of [3H]QNB, [3H]nicotine, and [3H]MCC vs [BAP] yielded Ki values of 7×10–8, 1×10–4, and 6×10–5 M, respectively. In behavioral studies BAP was able to antagonize the QNB-induced hyperactivity in mice; however, BAP did not appear to alter nicotine-induced seizure activity or other behavioral effects in mice. A plot of the time course of inhibition by BAP for [3H]QNB binding revealed that the inhibition was almost complete within 10 min exposure at 37°. The findings indicate that BAP is a useful affinity ligand for examining the biochemical and functional characteristics of brain cholinergic receptors, particularly the muscarinic which has an affinity near the nM concentration range.  相似文献   

2.
Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.  相似文献   

3.
R D Schwartz 《Life sciences》1986,38(23):2111-2119
The relative distribution of muscarinic and nicotinic cholinergic receptors labeled with [3H]acetylcholine was determined using autoradiography. [3H]Acetylcholine binding to high affinity muscarinic receptors was similar to what has been described for an M-2 distribution: highest levels of binding occurred in the pontine and brainstem nuclei, anterior pretectal area and anteroventral thalamic nucleus, while lower levels occurred in the caudate-putamen, accumbens nucleus and primary olfactory cortex. Nicotinic receptors were labeled with [3H]acetylcholine to the greatest extent in the interpeduncular nucleus, several thalamic nuclei, medial habenula, presubiculum and superior colliculus, and to the least extent in the hippocampus and inferior colliculus. By using autoradiography to localize cholinergic binding sites throughout the brain it was observed that the distributions of high affinity muscarinic and nicotinic sites labeled with the endogenous ligand, [3H]acetylcholine are different from each other and are different from distributions of muscarinic and nicotinic sites labeled with muscarinic and nicotinic antagonists.  相似文献   

4.
Effects of substances affecting intracellular secondary messengers on the membrane currents evoked by ionophoretic application of acetylcholine (ACh currents) and on the excitatory postsynaptic currents (EPSC) evoked by single stimuli applied to preganglionic nerve fibres, were studied in neurones of the rat isolated superior cervical ganglion. Forskolin, the protein kinase A activator, and isobutyl-methyxanthine, the phosphodiesterase inhibitor, decreased the ACh currents. Neither forskolin nor isobutyl-methylxanthine affected the EPSC amplitude or the EPSC decay time constant. Phorbol ester, the protein kinase C activator, decreased the ACh current but did not affect either EPSC amplitude or the EPSC decay time constant. Thapsigargin, the intracellular calcium releaser, decreased the ACh current and the EPSC amplitude but did not affect the EPSC decay time constant. The data obtained suggest that nicotinic acetylcholine receptors (nAChRs) of ganglion neurones are not modulated through the pathways involving protein kinase A or protein kinase C. The nAChRs sensitivity to both exogenous and nerve-released acetylcholine is reduced by intracellular calcium without affecting kinetics of their ionic channels.  相似文献   

5.
Ethanol increases agonist affinity for nicotinic receptors from Torpedo   总被引:3,自引:0,他引:3  
The presence of ethanol increases the apparent affinity with which acetylcholine and carbamylcholine elicit 86Rb+ flux from Torpedo nicotinic acetylcholine receptor-rich vesicles at 4 degrees C. Affinity increased exponentially with ethanol concentration, reaching nearly 200-fold by 3.0 M ethanol without sign of saturation. At submaximal agonist concentrations 50-100 mM ethanol enhanced flux by 15-35%, but the maximum agonist-induced flux was unaffected in quenched-flow assays. The effect was independent of the agonist and of the time over which flux was measured (5 ms to 10 s), indicating that ethanol acts before agonist-induced desensitization occurs. Ethanol also caused an increase in the apparent affinity with which acetylcholine caused fast desensitization. This affinity increase was equal to that for flux-response curves, but the maximum fast desensitization rate was increased 50% at 0.5 M ethanol. This was the most pronounced of ethanol's actions and has not been reported before. Prolonged preincubation with 1.0 M ethanol alone reduced agonist-induced flux activity by only 25%. The rate of agonist-induced slow desensitization was also increased, but neither of these effects was as marked as those on fast desensitization and cation flux.  相似文献   

6.
(-)-9-Fluorocytisine, (-)-9-methylcytisine and (-)-9-trifluoromethylcytisine were synthesized from the natural product (-)-cytisine. 9-Methyl and 9-trifluoromethyl cytisines display a remarkable affinity at the α(4)β(2) nicotinic receptor subtype (0.2 nM) with a high selectivity versus the α(7) nAChR subtype. Comparison of the affinity values suggests that the size of the substituent at the 9 position of (-)-cytisine seems more important than electronic factors for efficient binding and selectivity at α(4)β(2) nAChRs.  相似文献   

7.
8.
Nervous tissue preparations from Locusta migratoria specifically bind potent nicotinic (α-bungarotoxin) and muscarinic (quinuclidinyl benzilate) ligands. Binding properties and pharmacological data indicate that the central nervous system of the locust contains at least two distinct classes of receptors. Subcellular fractionation experiments revealed that the receptor activity is enriched in the synaptosomal fraction. In the head as well as in the thoracic ganglia the nicotinic acetylcholine receptors were found to be much more abundant than the muscarinic binding sites; whereas in mouse brain the muscarinic receptor type predominates.  相似文献   

9.
Incorporation of unsaturated fatty acids into membrane fragments from rat brain cortex and medulla pons selectively increased the affinity of the muscarinic agonist, carbamylcholine. The affinity and number of binding sites for the labeled antagonist, N-[3H]methyl-4-piperidyl benzilate was unchanged. The effect on agonist binding was most prominent in the cortex, in which carbamylcholine IC50 values were decreased up to 5-fold. Selectivity of the effect was observed with fatty acids of chain length 18-20 carbons, unsaturation in position 11-12, and a cis conformation of the double bond being most effective. The effects of fatty acids on agonist binding were due primarily to alterations in the affinity constants for the binding reaction, with minor increases in the proportion of high-affinity sites. Transition metals selectively increased the percentage of high-affinity sites in the cortex, but in cis-vaccenic-acid-treated membranes more than additive effects of the metal were observed; both were reversed by GTP. GTP also reversed binding parameters in cis-vaccenic-acid-treated medulla membranes to control level. We conclude that the primary effect of the active fatty acids is to alter the thermodynamic properties of muscarinic agonist binding without markedly inducing interconversion.  相似文献   

10.
A novel pyridine derivative, 3,5-bis-(1-methyl-pyrrolidin-2-yl)-pyridine, and a pair of diastereomers of 1,1'-dimethyl-[2,3']bipyrrolidinyl were isolated from the root of Nicotiana tabacum plants and identified as novel alkaloids by GC-MS analysis. The structures of these new alkaloids were confirmed by total synthesis. The affinities of these novel alkaloids, and other structurally related compounds for alpha4beta2*, alpha7* neuronal nicotinic acetylcholine receptors (nAChRs), and for nAChRs mediating nicotine-evoked dopamine release from rat striatum were also assessed. The results indicate that these compounds do not interact with alpha7* nAChRs, but inhibit [3H]nicotine binding to the alpha4beta2* nAChR subtype. The results also demonstrate that these compounds act as antagonists at nAChRs mediating nicotine-evoked dopamine release from rat striatum.  相似文献   

11.
Nicotinic acetylcholine receptors (nAChR) of insect and other invertebrates are heterogeneous and new tools are needed to dissect their multiplicity. [(3)H]-Methyllycaconitine ([(3)H]-MLA) is a novel radioligand which is a potent antagonist at vertebrate alpha7-type nAChR. Putative invertebrate nAChR of the aphid Myzus persicae, the moths Heliothis virescens and Manduca sexta, the fly Lucilia sericata, and the squid Loligo vulgaris were investigated in radioligand binding studies with [(3)H]-MLA. Saturable binding was consistent with a single class of high affinity binding sites for each of these invertebrates, characterised by a dissociation constant, K(d), of approximately 1 nM and maximal binding capacities, B(max), between 749 and 1689 fmol/mg protein for the insects and 14,111 fmol/mg protein for squid. [(3)H]-MLA binding to M. persicae membranes was characterised in more detail. Kinetic analysis demonstrated rapid association in a biphasic manner and slow, monophasic dissociation. Displacement studies demonstrate the nicotinic character of [(3)H]-MLA binding sites. Data for all nicotinic ligands, except MLA itself, are consistent with displacement from a high and a low affinity site, indicating that displacement is occurring from two or more classes of nicotinic binding site that are not distinguished by MLA itself. Autoradiographic analysis of the distribution of [(3)H]-MLA binding sites in Manduca sexta shows discrete labelling of neuropil areas of the optic and antennal lobes.  相似文献   

12.
Enzyme-resistant CCK analogs with high affinities for central receptors   总被引:3,自引:0,他引:3  
Based on the results of the in vitro metabolism of CCK8 by various peptidases, we have synthesized three CCK analogs: Boc-Tyr(SO3H)-Nle-Gly-Trp-(N- Me)Nle-Asp-Phe-NH2 (compound I), Boc-Tyr(SO3H)-gNle-mGly-Trp-Nle-Asp-Phe-Nh2 (compound II), Boc-Tyr(SO3H)-gNle-mGly-Trp-(N-Me)Nle-Asp-Phe-NH2 (compound III). In in vitro enzymatic degradation studies, these compounds showed a high stability toward either enkephalinase or the enzymes present in crude rat brain membranes preparations. Moreover, in binding studies on guinea pig tissues, these CCK-related peptides were characterized by high apparent affinities for brain CCK receptors and by a broader range of affinities for pancreatic CCK receptors. This broad range of affinities was reflected by their pharmacological potencies in the guinea pig pancreatic amylase release and ileum contraction assays. These enzyme-resistant CCK analogs provide therefore valuable tools to investigate the pharmacology of CCK.  相似文献   

13.
A series of CCK analogues in which positions 28 and 31 have been replaced by N-methylnorleucine residues have been synthesized. It has been found that most of these N-methylnorleucine containing analogues of CCK are highly potent and some are extraordinarily selective for the central vs. peripheral receptor in two animal models (guinea pig and rat). [N-MeNle28,31]CCK26-33 nonsulfated exhibited both high potency (IC50 = 0.13 nM) and selectivity for central vs. peripheral receptors. The pancrease to brain cortex binding affinity ratio for this analogue is 5100 in the rat model. NMR studies reveal that there is cis/trans isomerism about the N-methylnorleucine residue that may be related to high selectivity.  相似文献   

14.
The mammalian skeletal muscle acetylcholine receptor contains two nonequivalent acetylcholine binding sites, one each at the alpha/delta and alpha/gamma subunit interfaces. Alpha-Conotoxin MI, a 14-amino acid competitive antagonist, binds at both interfaces but has approximately 10(4) higher affinity for the alpha/delta site. We performed an "alanine walk" to identify the residues in alpha-MI that contribute to this selective interaction with the alpha/delta site. Electrophysiological measurements with Xenopus oocytes expressing normal receptors or receptors lacking either the gamma or delta subunit were made to assay toxin-receptor interaction. Alanine substitutions in most amino acid positions had only modest effects on toxin potency at either binding site. However, substitutions in two positions, proline-6 and tyrosine-12, dramatically reduced toxin potency at the high-affinity alpha/delta site while having comparatively little effect on low-affinity alpha/gamma binding. When tyrosine-12 was replaced by alanine, the toxin's selectivity for the high-affinity site (relative to that for the low-affinity site) was reduced from 45,000- to 30-fold. A series of additional amino acid substitutions in this position showed that increasing side chain size/hydrophobicity increases toxin potency at the alpha/delta site without affecting alpha/gamma binding. In contrast, when tyrosine-12 is diiodinated, toxin binding is nearly irreversible at the alpha/delta site but also increases by approximately 500-fold at the alpha/gamma site. The effects of position 12 substitutions are accounted for almost entirely by changes in the rate of toxin dissociation from the high-affinity alpha/delta binding site.  相似文献   

15.
A series of novel high affinity opioid receptor ligands have been made whereby the phenolic-OH group of nalbuphine, naltrexone methiodide, 6-desoxonaltrexone, hydromorphone and naltrindole was replaced by a carboxamido group and the furan ring was opened to the corresponding 4-OH derivatives. These furan ring ‘open’ derivatives display very high affinity for μ and κ receptors and much less affinity for δ. The observation that these target compounds have much higher receptor affinity than the corresponding ring ‘closed’ carboxamides significantly strengthens our underlying pharmacophore hypothesis concerning the bioactive conformation of the carboxamide group.  相似文献   

16.
The binding of human monocyte chemoattractant protein-1 (MCP-1) to human monocytes was studied. MCP-1 was radioiodinated with Iodo-beads (Pierce Chemical Co., Rockford, IL) without significant loss of biologic activity. 125I-MCP-1 binding to PBMC occurred within 5 min at 0 degrees C and the binding was inhibited by unlabeled MCP-1 dose dependently but not by neutrophil attractant/activation protein-1 or FMLP. 125I-MCP-1 bound to monocytes; no significant binding to either neutrophils or lymphocytes was observed. Scatchard plot analysis indicated that monocytes had a minimum of 1700 +/- 600 binding sites per cell with a Kd of 1.9 +/- 0.2 x 10(-9) M. For analysis of binding by flow cytometry, MCP-1 was biotinylated. In contrast to radioiodination, biotinylation resulted in loss of activity; potency was 10-fold less, but the efficacy was retained. Detection by flow cytometry of bound biotinylated MCP-1 with avidin-FITC confirmed results obtained with 125I-MCP-1. Biotinylated MCP-1 bound to monocytes but not to lymphocytes; and the binding was inhibited by a 100-fold excess of unlabeled MCP-1.  相似文献   

17.
18.
Skin of the frog Phyllomedusa sauvagei contains a cDNA sequence that codes for the selective mu-receptor peptide dermorphin and a new heptapeptide we have designated as dermorphin gene-associated peptide (DGAP). Investigation of the opioid receptor binding characteristics of synthetic DGAP and [D-Met2]DGAP revealed that the latter peptide had high affinity and selectivity for delta-type opioid receptors in rat brain synaptosomes. The IC50 values for DGAP on mu- and delta-receptors were only 28 microM and 670 nM, respectively, while that for [D-Met2]DGAP was 0.80 nM for delta-receptors and greater than 1 microM for mu-receptors yielding a very high delta selectivity ratio (SR) of 1345. In comparison, the SR values for [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, and [D-Pen2,5]enkephalin, ligands which are considered to be specific for delta-receptors, were 20, 42, and 301, respectively. Dermorphin, which contains a D-Ala2 residue and is a selective mu-receptor ligand (Lazarus, L.H., Guglietta, A., Wilson, W.E., Irons, B.J., and de Castiglione, R. (1989) J. Biol. Chem. 264, 354-362), exhibits a SR of 0.0055 similar to that for the conventional mu-agonist [D-Ala2,NMePhe4,Gly-ol]enkephalin (0.0040). This finding that frog skin cDNA contains the information to code for dermorphin and DGAP, or the presumed [D-Met2]DGAP molecule, which are among the most selective high affinity opioid ligands described for mu- and delta-receptors, may permit new insight into the design of future opioid receptor agonists and antagonists.  相似文献   

19.
The sigma-1 receptor is a unique non-opioid, non-PCP binding site that has been implicated in many different pathophysiological conditions including psychosis, drug addiction, retinal degeneration and cancer. Based on the structure of fenpropimorph, a high affinity (Ki = 0.005 nM)1 sigma-1 receptor ligand and strong inhibitor of the yeast sterol isomerase (ERG2), we previously deduced a basic sigma-1 receptor pharmacophore or chemical backbone composed of a phenyl ring attached to a di-substituted nitrogen atom via an alkyl chain.2 Here, we report the design and synthesis of various N,N-dialkyl or N-alkyl-N-aralkyl derivatives based on this pharmacophore as well as their binding affinities to the sigma-1 receptor. We introduce three high affinity sigma-1 receptor compounds, N,N-dibutyl-3-(4-fluorophenyl)propylamine (9), N,N-dibutyl-3-(4-nitrophenyl)propylamine (3), and N-propyl-N′-4-aminophenylethyl-3-(4-nitrophenyl)propylamine (20) with Ki values of 17.7 nM, 0.36 nM, and 6 nM, respectively. In addition to sigma receptor affinity, we show through cytotoxicity assays that growth inhibition of various tumor cell lines occurs with our high affinity N,N-dialkyl or N-alkyl-N-aralkyl derivatives.  相似文献   

20.
Acetylcholine (ACh) hyperpolarized the rat diaphragm muscle fibers by 4.5 +/- 0.8 mV (K0.5 = = 36 +/- 6 nmol/l). The AC-induced hyperpolarization was blocked by d-tubocurarine and ouabain in nanomolar concentrations. This effect of ACh was not observed in cultured C2C12 muscle cells and in Xenopus oocytes with expressed embryonic mouse muscle nicotinic acetylcholine receptors (nAChR) or with neuronal alpha 4 beta 2 nAChR. In membrane preparations from the Torpedo californica electric organ, containing both nAChR and Na, K-ATPase, 10 nmol/l ouabain modulated the binding kinetics of the cholinergic ligand dansyl-C6-choline to the nAChR. These results suggest that in-sensitive alpha 2 isoform) and nAChR in a state with high affinity to Ach and d-tubocurarine may form a functional complex in which binding of ACh to nAchR is coupled to activation of the Na, K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号