首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations of the androgen receptor gene cause a spectrum of androgen insensitivity phenotypes ranging from women with female external genitalia through patients with genital ambiguities to men with male genitalia but infertility. The CAG repeat in the first exon is important for transactivation of target genes of the androgen receptor and is thought to modulate androgen-dependent processes. Expansion of this repeat is the cause of X-linked spinobulbar muscular atrophy.  相似文献   

2.
Murine reproductive tissues of the external genitalia and perineum develop with remarkably distinctive characteristics in males and females. Although many researches on such mouse organ development have been reported, there are still limited parameters that evaluate the developmental sexual differences of external genitalia and perineum. Furthermore, elucidation of the recent developmental signals for the external genitalia and perineum requires up‐to‐date knowledge of gene functions in reproductive science. To promote researches on reproductive organ formation, establishment of parameters for the androgen‐mediated formation of external genitalia and perineum is essential. In this study, we propose genital sex differentiation parameters (GSDP), a set of developmental parameters based on systematic three‐dimensional tissue reconstruction and cumulative histological analyses. We define the sexual differences of external genitalia and perineum by GSDP through analyzing mouse models, androgen inhibitor‐induced feminization experiments and Mafb mutant mouse with defective urethral differentiation. The urethral parameters displayed prominent reduction by the androgen inhibitor (finasteride) treatment. However, genital tubercle (GT) size parameters were not affected by such treatment. These results indicated that sensitivity to dihydrotestosterone was different between embryonic GT size and urethral formation. Furthermore, we evaluated the extent of urethral defects of Mafb mutant mice by GSDP. Thus, GSDP is a set of useful parameters to define the sexual differences during external genitalia and perineum development.  相似文献   

3.
Human skin may be considered as a target organ for androgens, as are male sex accessory organs, since all events involved in testosterone action have been observed in this tissue. As a corollary, the mechanism of androgen action can be studiedin vitro in cultured skin fibroblasts. The advantages of this system are that studies can be performed with intact human cells under carefully controlled conditions, differentiated genetic and biochemical characteristics of the cells are faithfully preserved and the biological material is renewable from a single biopsy specimen. The metabolism of androgens, in particular the 5α-reduction of testosterone to the active metabolite, dihydrotestosterone, the intracellular binding of androgen to its specific receptor protein and its subsequent translocation to the nucleus have been studied in skin fibroblasts. The intracellular androgen receptor content of genital skin fibroblasts is higher than that from nongenital skin sites. In addition, the androgen receptor has been characterized as a specific macromolecule with properties of high affinity and low capacity similar to that of other steroid hormone receptors. The pathophysiology of three genetic mutations which alter normal male sexual development and differentiation has been identified in the human skin fibroblast system. In 5α-reductase deficiency, an autosomal recessive disorder in which dihydrotestosterone formation is impaired, virilization of the Wolffian ducts is normal but the external genitalia and urogenital sinus derivatives are female in character. At least two types of X-linked disorders of the androgen receptor exist such that the actions of both testosterone and dihydrotestosterone are impaired and developmental abnormalities may involve both Wolffian derivatives and the external genitalia as well. These two forms of androgen insensitivity result from either the absence of androgen receptor binding activity (receptor(−)form) or apparently normal androgen receptor binding with absence of an appropriate biological response (receptor (+) form). In addition, studies with human skin fibroblasts may also be of value in defining the cellular mechanisms underlying the broad spectrum of partial defects in virilization. In summary, we have correlated our studies of the molecular mechanism of androgen action in human genital skin fibroblasts with those of other investigators as these studies contribute to our understanding of male sexual development and differentiation.  相似文献   

4.
Summary Male and female embryos develop in an identical fashion during the initial portion of gestation. If the indifferent gonad differentiates into an ovary (or if no gonad is present), a female phenotype is formed. Male phenotypic differentiation, however, requires the presence of an endocrinologically active testis. Two secretion of the fetal testis, Müllerian inhibiting substance and testosterone, are responsible for male development. Studies of single gene mutations that interfere with androgen action indicate that testosterone itself is responsible for virilization of the Wolffian duct system into the epididymis, vas deferens, and seminal vesicle, whereas the testosterone metabolite dihydrotestosterone induces development of the prostate and male external genitalia. Thus, impairment of dihydrotestosterone formation results in a characteristic phenotype consisting of predominantly female external genitalia but normally virilized Wolffian ducts. The molecular mechanisms by which testosterone and dihydrotestosterone act during fetal development appear to involve the same high affinity receptor, a protein that transports both testosterone and dihydrotestosterone to the nucleus of target cells. When this receptor is either absent, deficient, or structurally abnormal, the actions of both testosterone and dihydrotestosterone are impaired, and the resulting developmental anomalies involve both internal and external genital structures.The original work described in this review was supported by grant AM 03892 from the National Institutes of Health  相似文献   

5.

Background  

Hypospadias is a common inborn error of the male urethral development, for which the aetiology is still elusive. Polymorphic variants in genes involved in the masculinisation of male genitalia, such as the androgen receptor, have been associated with some cases of hypospadias. Co-regulators of the androgen receptor start being acknowledged as possible candidates for hormone-resistance instances, which could account for hypospadias. One such molecule, the protein FKBP52, coded by the FKBP4 gene, has an important physiological role in up-regulating androgen receptor activity, an essential step in the development of the male external genitalia. The presence of hypospadias in mice lacking fkbp52 encouraged us to study the sequence and the expression of FKBP4 in boys with isolated hypospadias.  相似文献   

6.
7.
Coordinated growth and differentiation of external genitalia generates a proximodistally elongated structure suitable for copulation and efficient fertilization. The differentiation of external genitalia incorporates a unique process, i.e. the formation of the urethral plate and the urethral tube. Despite significant progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes for external genitalia. The sonic hedgehog (Shh) gene and its signaling genes have been found to be dynamically expressed during murine external genitalia development. Functional analysis by organ culture revealed that Shh could regulate mesenchymally expressed genes, patched 1 (Ptch1), bone morphogenetic protein 4 (Bmp4), Hoxd13 and fibroblast growth factor 10 (Fgf10), in the anlage: the genital tubercle (GT). Activities of Shh for both GT outgrowth and differentiation were also demonstrated. Shh(-/-) mice displayed complete GT agenesis, which is compatible with such observations. Furthermore, the regulation of apoptosis during GT formation was revealed for the first time. Increased cell death and reduced cell proliferation of the Shh(-/-) mice GT were shown. A search for alterations of Shh downstream gene expression identified a dramatic shift of Bmp4 gene expression from the mesenchyme to the epithelium of the Shh mutant before GT outgrowth. Regulation of mesenchymal Fgf10 gene expression by the epithelial Shh was indicated during late GT development. These results suggest a dual mode of Shh function, first by the regulation of initiating GT outgrowth, and second, by subsequent GT differentiation.  相似文献   

8.
Hypospadias is among the most common congenital malformations in male neonates. It results from abnormal penile and urethral development, but is a multifactorial disorder that is highly heterogeneous, with several genetic and environmental determinants. Monogenic and chromosomal abnormalities are present in approximately 30% of cases, although the genetic factors contributing to hypospadias remain unknown in 70% of cases. While defects in androgen synthesis can lead to this malformation, mutational analyses have shown several genes, such as sonic hedgehog, fibroblast growth factors, bone morphogenetic proteins, homeobox genes, and the Wnt family, are involved in the normal development of male external genitalia. Mutations in the genes of penile development (e.g., HOX, FGF, Shh) and testicular determination (e.g., WT1, SRY), luteinizing hormone receptor, and androgen receptor have also been proposed to be implicated in hypospadias. Here we review the recent advances in this field and discuss the potential genes that could determine the risk of hypospadias.  相似文献   

9.
Extra-corporal fertilization depends on the formation of copulatory organs: the external genitalia. Coordinated growth and differentiation of the genital tubercle (GT), an embryonic anlage of external genitalia, generates a proximodistally elongated structure suitable for copulation, erection, uresis and ejaculation. Despite recent progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes of external genitalia formation. Bone morphogenetic protein genes (Bmp genes) and their antagonists were spatiotemporally expressed during GT development. Exogenously applied BMP increased apoptosis of GT and inhibited its outgrowth. It has been shown that the distal urethral epithelium (DUE), distal epithelia marked by the Fgf8 expression, may control the initial GT outgrowth. Exogenously applied BMP4 downregulated the expression of Fgf8 and Wnt5a, concomitant with increased apoptosis and decreased cell proliferation of the GT mesenchyme. Furthermore, noggin mutants and Bmpr1a conditional mutant mice displayed hypoplasia and hyperplasia of the external genitalia respectively. noggin mutant mice exhibited downregulation of Wnt5a and Fgf8 expression with decreased cell proliferation. Consistent with such findings, Wnt5a mutant mice displayed GT agenesis with decreased cell proliferation. By contrast, Bmpr1a mutant mice displayed decreased apoptosis and augmented Fgf8 expression in the DUE associated with GT hyperplasia. These results suggest that some of the Bmp genes could negatively affect proximodistally oriented outgrowth of GT with regulatory functions on cell proliferation and apoptosis. The DUE region can be marked only until 14.0 dpc (days post coitum) in mouse development, while GT outgrowth continues thereafter. Possible signaling crosstalk among the whole distal GT regions were also investigated.  相似文献   

10.
Discordance between sexual phenotype and the 46,XY sex chromosome complement may be found in certain disorders of sexual development (DSD). Many of these DSD patients with female external genitalia and secondary sex characteristics have undescended testes and male internal genitalia. Causative mutations involving genes of the sex determining pathway, including the androgen receptor, SRY and the 5-alpha-reductase genes, are well-known, but the origin of other cases remain unresolved. In this report, we introduce our collection of lymphoblastoid lines derived from female patients with a 46,XY karyotype. These cell lines have been deposited and registered with the JCRB Cell Bank. They are available for comparison with other DSD cases and for further characterization of genetic loci involved in the mammalian sex determining pathway.  相似文献   

11.
The present review explores sexual differentiation in three non-conventional species: the spotted hyena, the elephant and the tammar wallaby, selected because of the natural challenges they present for contemporary understanding of sexual differentiation. According to the prevailing view of mammalian sexual differentiation, originally proposed by Alfred Jost, secretion of androgen and anti-Mullerian hormone (AMH) by the fetal testes during critical stages of development accounts for the full range of sexually dimorphic urogenital traits observed at birth. Jost's concept was subsequently expanded to encompass sexual differentiation of the brain and behavior. Although the central focus of this review involves urogenital development, we assume that the novel mechanisms described in this article have potentially significant implications for sexual differentiation of brain and behavior, a transposition with precedent in the history of this field. Contrary to the "specific" requirements of Jost's formulation, female spotted hyenas and elephants initially develop male-type external genitalia prior to gonadal differentiation. In addition, the administration of anti-androgens to pregnant female spotted hyenas does not prevent the formation of a scrotum, pseudoscrotum, penis or penile clitoris in the offspring of treated females, although it is not yet clear whether the creation of masculine genitalia involves other steroids or whether there is a genetic mechanism bypassing a hormonal mediator. Wallabies, where sexual differentiation occurs in the pouch after birth, provide the most conclusive evidence for direct genetic control of sexual dimorphism, with the scrotum developing only in males and the pouch and mammary glands only in females, before differentiation of the gonads. The development of the pouch and mammary gland in females and the scrotum in males is controlled by genes on the X chromosome. In keeping with the "expanded" version of Jost's formulation, secretion of androgens by the fetal testes provides the best current account of a broad array of sex differences in reproductive morphology and endocrinology of the spotted hyena, and androgens are essential for development of the prostate and penis of the wallaby. But the essential circulating androgen in the male wallaby is 5alpha androstanediol, locally converted in target tissues to DHT, while in the pregnant female hyena, androstenedione, secreted by the maternal ovary, is converted by the placenta to testosterone (and estradiol) and transferred to the developing fetus. Testicular testosterone certainly seems to be responsible for the behavioral phenomenon of musth in male elephants. Both spotted hyenas and elephants display matrilineal social organization, and, in both species, female genital morphology requires feminine cooperation for successful copulation. We conclude that not all aspects of sexual differentiation have been delegated to testicular hormones in these mammals. In addition, we suggest that research on urogenital development in these non-traditional species directs attention to processes that may well be operating during the sexual differentiation of morphology and behavior in more common laboratory mammals, albeit in less dramatic fashion.  相似文献   

12.
Ogino Y  Katoh H  Yamada G 《FEBS letters》2004,575(1-3):119-126
Male external genitalia show structural variations among species. Androgenic hormones are essential for the morphological specification of male type copulatory organs, while little is known about the developmental mechanisms of such secondary sexual characters. Western mosquitofish Gambusia affinis may offer a clue to the sexual differentiation researches, because they show a prominent masculine sexual character for appendage development, anal fin to gonopodium (GP) transition, and its formation could be induced in early juvenile fry by exogenously supplied androgens. We show that GP development is promoted by androgen dependent augmentation of sonic hedgehog (Shh) expression. Two AR cDNAs were cloned and identified as ARalpha and ARbeta from western mosquitofish. Both ARs were predominantly expressed in the distal region of outgrowing anal fin rays. Exposure of fry to androgen caused anal fin outgrowth concomitant with the Shh induction in the distal anal fin ray epithelium. When AR signaling was inhibited by its antagonist flutamide in fry, the initial induction of the Shh was suppressed accompanying retarded anal fin outgrowth. Similar suppression of anal fin outgrowth was induced by treatment with cyclopamine, an inhibitor of Shh signaling. These observations indicate that androgen dependent Shh expression is required for anal fin outgrowth leading to the formation of a genital appendage, the GP in teleost fishes. Androgen-induced GP formation may provide insights into the expression mechanism regulating the specification of sexual features in vertebrates.  相似文献   

13.
The endocrine control of male phenotypic development   总被引:1,自引:0,他引:1  
Male and female embryos develop in an identical fashion during the initial portion of gestation. If the indifferent gonad differentiates into an ovary (or if no gonad is present), a female phenotype is formed. Male phenotypic differentiation, however, requires the presence of an endocrinologically active testis. Two secretions of the foetal testis, Mullerian-inhibiting substance and testosterone, are responsible for male development. Testosterone itself is responsible for virilization of the Wolffian duct system into the epididymis, vas deferens, and seminal vesicle, whereas dihydrotestosterone induces development of the prostate and male external genitalia. Thus, impairment of dihydrotestosterone formation results in a characteristic phenotype consisting of predominantly female external genitalia but normally virilized Wolffian ducts. The molecular mechanisms by which testosterone and dihydrotestosterone act during foetal development appear to involve the same high affinity receptor, a protein that transports both testosterone and dihydrotestosterone to the nucleus of target cells. When this receptor is either absent, deficient, or structurally abnormal, the actions of both testosterone and dihydrotestosterone are impaired, and the resulting developmental anomalies involve both internal and external genital structures.  相似文献   

14.
The imaginal discs of Drosophila melanogaster are an excellent material with which to analyze how signaling pathways and Hox genes control growth and pattern formation. The study of one of these discs, the genital disc, offers, in addition, the possibility of integrating the sex determination pathway into this analysis. This disc, whose growth and shape are sexually dimorphic, gives rise to the genitalia and analia, the more posterior structures of the fruit fly. Male genitalia, which develop from the ninth abdominal segment, and female genitalia, which develop mostly from the eighth one, display a characteristic array of structures. We will review here some recent findings about the development of these organs. As in other discs, different signaling pathways establish the positional information in the genital primordia. The Hox and sex determination genes modify these signaling routes at different levels to specify the particular growth and differentiation of male and female genitalia.  相似文献   

15.
Most attempts to identify biological underpinnings of gender identity and sexual orientation in humans have investigated effects of sex steroids, so pivotal in the differentiation of the genitalia, showing strong parallels between animals and the human. The information on humans is derived from the so-called 'experiments of nature', clinical entities with a lesser-than-normal androgen exposure in XY subjects and a higher than normal androgen exposure in XX subjects. Prenatal androgenization appears to predispose to a male gender identity development, but apparently not decisively since 40-50% of 46,XY intersexed children with a history of prenatal androgen exposure do not develop a male gender identity. Obviously, male-to-female transsexuals, with a normal androgen exposure prenatally (there is no serious evidence to the contrary) develop a female gender identity, through unknown biological mechanisms apparently overriding the effects of prenatal androgens. The latest studies in 46, XX subjects exposed to prenatal androgens show that prenatal androgenization of 46,XX fetuses leads to marked masculinization of later gender-related behavior but does not lead to gender confusion/dysphoria. The example of female-to-male transsexuals, without evidence of prenatal androgen exposure, indicates that a male gender identity can develop without a significant androgen stimulus. So we are far away from any comprehensive understanding of hormonal imprinting on gender identity formation. Brain studies in homosexuals have not held up in replication studies or are in need of replication in transsexuals. Genetic studies and the fraternal birth order hypothesis provide indications of familial clustering of homosexuality but in many homosexuals these genetic patterns cannot be identified. The biological explanations advanced for the birth order hypothesis lack any experimental support.  相似文献   

16.
The Leydig cells, responsible for testicular androgen production, have two growth phases during the life-span of mammals. The fetal population appears during fetal life and is responsible for the androgen-induced differentiation of the male genitalia. The fetal Leydig cells disappear after birth, and the other population, the adult Leydig cells, appears during puberty and persists for the whole adult life. The fetal Leydig cells, evidently due to the intrauterine endocrine milieu and their special functional requirements in genital differentiation, differ both morphologically and functionally from the adult population. The purpose of this review is to elucidate the special features of the mammalian fetal Leydig cell population, which presents an intriguing experimental model for studies of function and regulation of steroidogenic cells.  相似文献   

17.
Exon 1 polymorphism of the androgen receptor (AR) gene is characterized by a (CAG)n(CAA) repeat at position 172 following the translation start codon. The aim of this study was to determine whether AR gene exon 1 polymorphism could be used to perform prenatal diagnosis in high risk families with complete or partial androgen insensitivity syndrome. After enzymatic amplification of a 1 kilobase exon 1 fragment, each DNA was simultaneously digested by MspI and PstI restriction enzymes. After electrophoresis on a 15% electrophoresis on a 15% acrylamide gel or a 6% Nusieve gel, we measured the size of the obtained fragments and determined the number of CAG repeats since a 282 basepair fragment corresponds to 21 CAG. We previously showed that the number of CAG repeats within the AR gene exon 1 in 23 families with complete or partial androgen insensitivity syndrome was 19 +/- 4. By this method, we detected heterozygosity in 50% of the mothers. We present here 2 exclusion prenatal diagnoses using exon 1 polymorphism of the AR gene. Family A presented a boy with a severe form of partial androgen insensitivity syndrome. The mother had 2 uncles with ambiguous genitalia. In family B, the affected child had a complete androgen insensitivity syndrome. In both families, analysis of the AR gene exon 1 polymorphism of the trophoblastic DNA showed the presence of the normal maternal X chromosome. The parents decided to carry on the gestation. In family A, the newborn had normal male external genitalia. In family B, sonography confirmed the presence of normal male external genitalia. These data suggest that exon 1 polymorphism of the AR gene could be prenatally used to predict androgen insensitivity syndrome.  相似文献   

18.
19.
Summary The genetic terminology of sex determination and sex differentiation is examined in relation to its underlying biological basis. On the assumption that the function of the testis is to produce hormones and spermatozoa, the hypothesis of a single Y-chromosomal testis-determining gene with a dominant effect is shown to run counter to the following observed facts: a lowering in testosterone levels and an increase in the incidence of undescended testes, in addition to sterility, in males with multiple X chromosomes; abnormalities of the testes in autosomal trisomies; phenotypic abnormalities of XX males apparently increasing with decreasing amounts of Y-chromosomal material; the occurrence of patients with gonadal dysgenesis and XY males with ambiguous genitalia in the same sibship; the occurrence of identical SRY mutations in patients with gonadal dysgenesis and fertile males in the same pedigree; and the development of XY female and hermaphrodite mice having the same genetic constitution. The role of X inactivation in the production of males, females and hermaphrodites in T(X;16)16H mice has previously been suggested but not unequivocally demonstrated; moreover, X inactivation cannot account for the observed bilateral asymmetry of gonadal differentiation in XY hermaphrodites in humans and mice. There is evidence for a delay in development of the supporting cells in XY mice with ovarian formation. Once testicular differentiation and male hormone secretion have begun, other Y-chromosomal genes are required to maintain spermatogenesis and to complete spermiogenesis, but these genes do not function effectively in the presence of more than one X chromosome. The impairment of spermatogenesis by many other chromosome abnormalities seems to be more severe than that of oogenesis. It is concluded that the notion of a single testis-determining gene being responsible for male sex differentiation lacks biological validity, and that the genotype of a functional, i.e. fertile, male differs from that of a functional female by the presence of multiple Y-chromosomal genes in association with but a single X chromosome. Male sex differentiation in XY individuals can be further impaired by a euploid, but inappropriate, genetic background. The genes involved in testis development may function as growth regulators in the tissues in which they are active.  相似文献   

20.
The highly masculinized genitalia of female spotted hyenas Crocuta crocuta is unique among mammals: Crocuta have no external vagina so urination, penile intromission and parturition take place through the clitoris, which mimics a fully erectile male penis. Among hyenids, virilization of external female genitalia has previously been observed only in Crocuta, so functional explanations of masculinization have focused on aspects of social ecology unique to the species. Here we first show that the striped hyena Hyaena hyaena exhibits both unusual similarity in male and female androgen concentrations and transient genital anomalies characterized by a convergence in genital appearance among young males and females. We then evaluate hypotheses regarding the evolution of genital masculinization in the Hyaenidae and other taxa. Hyaena are behaviorally solitary, so discovery of unusual genital development patterns in this species does not support any current evolutionary models for masculinization in Crocuta, which all rely on the trait originating within a highly social species. Some hypotheses can be modified so that masculinization in Crocuta represents an extreme elaboration of a preexisting trait, shared as a homology with Hyaena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号