首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability and specific activity of endo-β-1,4-glucanase III from Trichoderma reesei QM9414 was enhanced, and the expression efficiency of its encoding gene, egl3, was optimized by directed evolution using error-prone PCR and activity screening in Escherichia coli RosettaBlue (DE3) pLacI as a host. Relationship between increase in yield of active enzyme in the clones and improvement in its stability was observed among the mutants obtained in the present study. The clone harboring the best mutant 2R4 (G41E/T110P/K173M/Y195F/P201S/N218I) selected in via second-round mutagenesis after optimal recombinating of first-round mutations produced 130-fold higher amount of mutant enzyme than the transformant with wild-type EG III. Mutant 2R4 produced by the clone showed broad pH stability (4.4–8.8) and thermotolerance (entirely active at 55°C for 30 min) compared with those of the wild-type EG III (pH stability, 4.4–5.2; thermostability, inactive at 55°C for 30 min). k cat of 2R4 against carboxymethyl-cellulose was about 1.4-fold higher than that of the wild type, though the K m became twice of that of the wild type.  相似文献   

2.
Brevundimonas diminuta TPU 5720 produces an amidase acting l-stereoselectively on phenylalaninamide. The enzyme (LaaABd) was purified to electrophoretic homogeneity by ammonium sulfate fractionation and four steps of column chromatography. The final preparation gave a single band on SDS-PAGE with a molecular weight of ≈53,000. The native molecular weight of the enzyme was about 288,000 based on gel filtration chromatography, suggesting that the enzyme is active as a homohexamer. It had maximal activity at 50°C and pH 7.5. LaaABd lost its activity almost completely on dialysis against potassium phosphate buffer (pH 7.0), and the amidase activity was largely restored by the addition of Co2+ ions. The enzyme was, however, inactivated in the presence of ethylenediaminetetraacetic acid even in the presence of Co2+, suggesting that LaaABd is a Co2+-dependent enzyme. LaaABd had hydrolyzing activity toward a broad range of l-amino acid amides including l-phenylalaninamide, l-glutaminamide, l-leucinamide, l-methioninamide, l-argininamide, and l-2-aminobutyric acid amide. Using information on the N-terminal amino acid sequence of the enzyme, the gene encoding LaaABd was cloned from the chromosomal DNA of the strain and sequenced. Analysis of 4,446 bp of the cloned DNA revealed the presence of seven open-reading frames (ORFs), one of which (laaA Bd ) encodes the amidase. LaaABd is composed of 491 amino acid residues (calculated molecular weight 51,127), and the deduced amino acid sequence exhibits significant similarity to that of ORFs encoding hypothetical cytosol aminopeptidases found in the genomes of Caulobacter crescentus, Bradyrhizobium japonicum, Rhodopseudomonas palustris, Mesorhizobium loti, and Agrobacterium tumefaciens, and leucine aminopeptidases, PepA, from Rickettsia prowazekii, Pseudomonas putida ATCC 12633, and Escherichia coli K-12. The laaA Bd gene modified in the nucleotide sequence upstream from its start codon was overexpressed in an E. coli transformant. The activity of the recombinant LaaABd in cell-free extracts of the E. coli transformant was 25.9 units mg−1 with l-phenylalaninamide as substrate, which was 50 times higher than that of B. diminuta TPU 5720.  相似文献   

3.
A novel enzyme, β-phenylalanine ester hydrolase, useful for chiral resolution of β-phenylalanine and for its β-peptide synthesis was characterized. The enzyme purified from the cell free-extract of Sphingobacterium sp. 238C5 well hydrolyzed β-phenylalanine esters (S)-stereospecifically. Besides β-phenylalanine esters, the enzyme catalyzed the hydrolysis of several α-amino acid esters with l-stereospecificity, while the deduced 369 amino acid sequence of the enzyme exhibited homology to alkaline d-stereospecific peptide hydrolases from Bacillus strains. Escherichia coli transformant expressing the β-phenylalanine ester hydrolase gene exhibited an about 8-fold increase in specific (S)-β-phenylalanine ethyl ester hydrolysis as compared with that of Sphingobacterium sp. 238C5. The E. coli transformant showed (S)-enantiomer specific esterase activity in the reaction with a low concentration (30 mM) of β-phenylalanine ethyl ester, while it showed both esterase and transpeptidase activity in the reaction with a high concentration (170 mM) of β-phenylalanine ethyl ester and produced β-phenylalanyl-β-phenylalanine ethyl ester. This transpeptidase activity was useful for β-phenylalanine β-peptide synthesis.  相似文献   

4.
The functional and structural significance of glutamic acid 219 of a N- and C-terminally truncated Bacillus sp. strain TS-23 α-amylase (BACΔNC) was explored by the approach of site-directed saturation mutagenesis. The expressed wild-type and mutant enzymes have been purified by nickel-chelate chromatography and their molecular mass was determined to be approximately 54 kDa by SDS/PAGE. Except E219F, E219P, and E219W, all other mutant enzymes exhibited a lower shift in their optimum temperatures with respect to the wild-type enzyme. A decreased thermostability was also found in all of the mutant enzymes when compared with the wild-type form of BACΔNC. Except E219F, E219P, and E219W mutant enzymes, greater than 2-fold decrease in k cat and a similar substrate affinity relative to the wild-type BACΔNC were observed for the rest mutant enzymes. Based on these observations, it is suggested that Glu-219 apparently plays an important role in the thermostability of BACΔNC.  相似文献   

5.
Zhang Y  Xu C  Lu Z  Yang Y  Ge F  Zhu G  Teng M  Niu L 《Current microbiology》2002,44(4):273-279
The plasmid pUT for homologous recombination was constructed by the insertion of the 1.1-kb thiostrepton resistance (tsr R) gene into the E. coli plasmid pUB1-GI1. Plasmid pUTK was produced through ligating the cleaved plasmid pUT by KpnI. After pUT and pUTK were introduced into Streptomyces diastaticus No.7 strain M1033 (SM33) by protoplast transformation, a series of tsrR transformants were obtained, further based on enzyme assays. These results for polymerase chain reaction (PCR), DNA sequencing, restriction enzyme digestion, and recovery of cloned fragments from the transformant chromosome demonstrated the plasmid pUT and pUTK had integrated into the SM33 chromosome in three different patterns of single cross-over by homologous recombination. This directly results in double-copy GI gene in the transformant chromosome, of which one is wild-type GI gene, the other mutant GI (GIG138P, GI1) gene. Among the strains of the three kinds of recombinant patterns, one transformant was chosen and named K1, T2, and T3, respectively. The further identification of the three recombinant strains by PCR, DNA sequencing, restriction enzyme digestion, and Southern hybridization also proved there is a double-copy GI gene within their chromosome. Enzyme activity assay and thermostability analysis indicated that all three engineering strains expressed not only wild-type enzyme but also mutant GI. Received: 9 July 2001 / Accepted: 8 August 2001  相似文献   

6.
Random mutagenesis was used to create a library of chimeric dextranase (dex1) genes. A plate-screening protocol was developed with improved thermostability as a selection criterion. The mutant library was screened for active dextranase variants by observing clearing zones on dextran-blue agar plates at 50°C after exposure to 68°C for 2 h, a temperature regime at which wild-type activity was abolished. A number of potentially improved variants were identified by this strategy, five of which were further characterised. DNA sequencing revealed ten nucleotide substitutions, ranging from one to four per variant. Thermal inactivation studies showed reduced (2.9-fold) thermostability for one variant and similar thermostability for a second variant, but confirmed improved thermostability for three mutants with 2.3- (28.9 min) to 6.9-fold (86.6 min) increases in half-lives at 62°C compared to that of the wild-type enzyme (12.6 min). Using a 10-min assay, apparent temperature optima of the variants were similar to that of the wild type (T opt 60°C). However, one of these variants had increased enzyme activity. Therefore, the first-generation dextranase mutant pool obtained in this study has sufficient molecular diversity for further improvements in both thermostability and activity through recombination (gene shuffling).  相似文献   

7.
Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60–80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6–7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.  相似文献   

8.
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.  相似文献   

9.
Niu  Chengtuo  Zhu  Linjiang  Xu  Xin  Li  Qi 《Applied microbiology and biotechnology》2017,101(3):1085-1097

Higher thermostability is required for 1,3-1,4-β-glucanase to maintain high activity under harsh conditions in the brewing and animal feed industries. In this study, a comprehensive and comparative analysis of thermostability in bacterial β-glucanases was conducted through a method named spatial compartmentalization of mutational hotspots (SCMH), which combined alignment of homologous protein sequences, spatial compartmentalization, and molecular dynamic (MD) simulation. The overall/local flexibility of six homologous β-glucanases was calculated by MD simulation and linearly fitted with enzyme optimal enzymatic temperatures. The calcium region was predicted to be the crucial region for thermostability of bacterial 1,3-1,4-β-glucanases, and optimization of four residue sites in this region by iterative saturation mutagenesis greatly increased the thermostability of a mesophilic β-glucanase (BglT) from Bacillus terquilensis. The E46P/S43E/H205P/S40E mutant showed a 20 °C increase in optimal enzymatic temperature and a 13.8 °C rise in protein melting temperature (T m) compared to wild-type BglT. Its half-life values at 60 and 70 °C were 3.86-fold and 7.13-fold higher than those of wild-type BglT. The specific activity of E46P/S43E/H205P/S40E mutant was increased by 64.4 %, while its stability under acidic environment was improved. The rational design strategy used in this study might be applied to improve the thermostability of other industrial enzymes.

  相似文献   

10.
Epoxide hydrolases (EHs) of fungal origin have the ability to catalyze the enantioselective hydrolysis of epoxides to their corresponding diols. However, wild type fungal EHs are limited in substrate range and enantioselectivity. Additionally, the production of fungal epoxide hydrolase (EH) by wild-type strains is typically very low. In the present study, the EH-encoding gene from Rhodotorula araucariae was functionally expressed in Yarrowia lipolytica, under the control of a growth phase inducible hp4d promoter, in a multi-copy expression cassette. The transformation experiments yielded a positive transformant, with a final EH activity of 220 U/g dw in shake-flask cultures. Evaluation of this transformant in batch fermentations resulted in ~ 7-fold improvement in EH activity over the flask scale. Different constant specific feed rates were tested in fed-batch fermentations, resulting in an EH activity of 1,750 U/g dw at a specific feed rate of ~ 0.1 g/g/h, in comparison to enzyme production levels of 0.3 U/g dw for the wild type R. araucariae and 52 U/g dw for an Escherichia coli recombinant strain expressing the same gene. The expression of EH in Y. lipolytica using a multi-copy cassette demonstrates potential for commercial application.  相似文献   

11.
12.
Random mutagenesis was performed on β-agarase, AgaB, from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutants E99K, T307I and E99K–T307I were approx. 140, 190 and 200%, respectively, of wild type β-agarase (661 U/mg) at 40°C. All three mutant enzymes were stable up to 50°C and E99K–T307I had the highest thermostability. The melting temperature (T m) of E99K–T307I, determined by CD spectra, was increased by 5.2°C over that of the wild-type enzyme (54.6°C). Activities of both the wild-type and E99K–T307I enzymes, as well as their overall thermostabilities, increased in 1 mM CaCl2. The E99K–T307I enzyme was stable at 55°C with 1 mM CaCl2, reaching 260% of the activity the wild-type enzyme held at 40°C without CaCl2.  相似文献   

13.
In order to improve a natural enzyme so as to fit industrial purposes, we have applied experimental evolution techniques comprised of successive in vitro random mutagenesis and efficient screening systems. Subtilisin BPN, a useful alkaline serine protease, was used as the model enzyme, and the gene was cloned to an Escherichia coli host-vector system. Primary mutants with reduced activities of below 80% of that of the wild type were first derived by hydroxylamine mutagenesis directly applied to subtilisin gene DNA, followed by screening of clear-zone non-forming transformant colonies cultured at room temperature on plates containing skim-milk. Then, secondary mutants were derived from each primary mutant by the same mutagenic procedure, but screened by detecting transformant colonies incubated at 10°C with clear zones that were greater in size than that of the wild type. One such secondary mutant, 12–12, derived from a primary mutant with 80% activity, was found to gain 150% activity (k cat/K m value) of the wild-type when the mutant subtilisin gene was subcloned to a Bacillus subtilis host-vector system, expressed to form secretory mutant enzyme in the medium, and the activity measured using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate. When N-succinyl-l-Ala-l-Ala-l-Pro-l-Leu-p-nitroanilide was used, 180% activity was gained. Genetic analysis revealed that the primary and secondary mutations corresponded to D197N and G131D, respectively. The activity variations found in these mutant subtilisins were discussed in terms of Ca2+-binding ability. The thermostability was also found to be related to the activity.  相似文献   

14.
The expression of penicillin acylase (PA), cloned in the pPA102 plasmid under control of the wild-type lac promoter and using galactose as inducer in Escherichia coli JM101, JM103 and JM105 transformant cells, was analyzed. The E. coli JM101/pPA102 cultures attained the highest specific activity of PA. For large scale PA production based on E. coli JM101/pPA102 a culture media with galactose instead of isopropyl-thio-galactopyranoside as inducer would be as successful and less expensive.  相似文献   

15.
The effect of bleomycin A5 residue linked to four-, eight-, and twelve-mer oligodeoxyribonucleotides on the substrate properties of their tandem and continuous (with or without unmodified octanucleotide effectors) hybrid duplexes was studied using E. coli RNase H. The bleomycin derivatives of oligodeoxyribonucleotides were shown to form hybrid duplexes with practically the same thermostability as those formed by unmodified oligodeoxyribonucleotides. The RNA in the bleomycin-containing hybrid duplexes is cleaved by E. coli RNase H; however, the initial hydrolysis rate (v 0) is 2.6–3.4-fold reduced for the continuous duplexes. In the case of tandem hybrid complexes, the effect of bleomycin on v 0 was less pronounced. We hypothesized that steric factors play a key role in the bleomycin inhibition and effectors probably determine the substrate properties of such hybrid complexes. Of all the tandem systems studied, the RNA duplex with the bleomycin-containing tetranucleotide flanked with two effectors displayed the best substrate properties.  相似文献   

16.
We report that polyamines have an effect on the SOS response of the umu operon in polyamine-deficient mutant and wild-type Escherichia coli strains carrying the umu'-'lacZ fusion. H2O2 effectively induces umu'-'lacZ in the wild type, but not significantly in the mutant strain. Exogenous polyamines did not restore the umu induction in the mutant to the wild-type level. In logarithmically growing cells, the basal expression of umu gene in the mutant is about five times higher than that of the wild type. The addition of polyamines to the growth medium markedly reduces the basal expression to the wild-type level. This reduction is due not to growth rate but to the polyamine itself. Our results suggest that polyamines are essentially involved in the SOS induction of the umu operon in E. coli.  相似文献   

17.
Mansukhani  Alka  Condon  Tom  Hampel  Arnold  Oxender  Dale L. 《Biochemical genetics》1984,22(3-4):349-355
The Chinese hamster ovary (CHO) cell culture temperature-sensitive mutant ts025Cl with a defect in leucyl-tRNA synthetase (LeuRS) does not have an inherently more thermolabile LeuRS, but instead the mutation causes the complete loss of the LeuRS high molecular weight complexes which are present in normal wild-type cells. The mutant cell LeuRS has a single 8 S enzyme form which corresponds hydrodynamically to the 8 S free form of wild-type enzyme. Both 8 S forms have the same thermostability and the same K m for leucine, indicating that there is no inherent defect in the catalytic activity of the enzyme. The temperature-sensitive phenotype can be explained by the lack of thermostable high molecular weight forms of LeuRS.This work was supported by NIH Grant GM 19506 to A.E.H. and GM 20737 to D.E.O.  相似文献   

18.
The gene for phospholipase D (PLD) of Streptomyces sp. YU100 was cloned from λ phage library and hetero-logously expressed in Escherichia coli. Using an amplified gene fragment based on the consensus sequences of streptomycetes PLDs, λ phage library of Streptomyces sp. YU100 chromosomal DNA was screened. The sequencing result of BamHI-digested 3.8 kb fragment in a positive phage clone revealed the presence of an open reading frame of a full sequence of PLD gene encoding a 540-amino acid protein including 33-amino acid signal peptide. The deduced amino acid sequence showed a high homology with other Streptomyces PLDs, having the highly conserved ‘HKD’ motifs. The PLD gene excluding signal peptide sequence was amplified and subcloned into a pET-32b(+) expression vector in E. coli BL21(DE3). The recombinant PLD was purified by nickel affinity chromatography and compared the enzyme activity with wild-type PLD. The results imply that the recombinant PLD produced by E. coli had the nearly same enzyme activity as PLD from Streptomyces sp. YU100.  相似文献   

19.
A chitinase (VpChiA) and its C-terminal truncated G589 mutant (VpChiAG589) of Vibrio parahaemolyticus were cloned by polymerase chain reaction (PCR) techniques. To study the role of the C-terminal 30 amino acids of VpChiA in the enzymatic hydrolysis of chitin, both the recombinant VpChiA and VpChiAG589 encoded in 1,881 and 1,791 bp DNA fragments, respectively, were expressed in Escherichia coli using the pET-20b(+) expression system. The His–Tag affinity purified VpChiA and VpChiAG589 enzymes had a calculated molecular mass of 65,713 and 62,723 Da, respectively. The results of biochemical characterization including kinetic parameters, spectroscopy of fluorescence and circular dichroism, chitin-binding and hydrolysis, and thermostability, both VpChiA and VpChiAG589, had very similar physicochemical properties such as the optimum pH (6), temperature (40°C), and kinetic parameters of Km and kcat against the 4MU–(GlcNAc)2 or 4MU–(GlcNAc)3 soluble substrates. The significant increase of thermostability and the drastic decrease of the hydrolyzing ability of VpChiAG589 toward the insoluble α-chitin substrate suggested that a new role could be played by the C-terminal 30 amino acids.  相似文献   

20.
The thermal and alkaline pH stability of Streptomyces lividans xylanase B was improved greatly by random mutagenesis using DNA shuffling. Positive clones with improved thermal stability in an alkaline buffer were screened on a solid agar plate containing RBB-xylan (blue). Three rounds of directed evolution resulted in the best mutant enzyme 3SlxB6 with a significantly improved stability. The recombinant enzyme exhibited significant thermostability at 70°C for 360 min, while the wild-type lost 50% of its activity after only 3 min. In addition, mutant enzyme 3SlxB6 shows increased stability to treatment with pH 9.0 alkaline buffer. The K m value of 3SlxB6 was estimated to be similar to that of wild-type enzyme; however k cat was slightly decreased, leading to a slightly reduced value of k cat/K m, compared with wild-type enzyme. DNA sequence analysis revealed that eight amino acid residues were changed in 3SlxB6 and substitutions included V3A, T6S, S23A, Q24P, M31L, S33P, G65A, and N93S. The stabilizing effects of each amino acid residue were investigated by incorporating mutations individually into wild-type enzyme. Our results suggest that DNA shuffling is an effective approach for simultaneous improvement of thermal and alkaline pH stability of Streptomyces lividans xylanase B even without structural information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号