首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The morphology, G- and C-banding pattern of the Akodon mollis chromosome complement is analysed. Over a total of 14 males and 10 females studied, 8 males and 7 females had a modal chromosome number of 22, while 6 males and 3 females showed a modal number of 23 chromosomes. In the animals with 23 chromosomes the odd element was considered a B chromosome on the basis of: (a) its small size, (b) the lack of an homologous chromosome and the subsequent formation of univalents at diakinesis and metaphase I from testes, (c) the weak or null genetic action as evidenced by the lack of any obvious variation in the phenotype of carriers.Four females exhibited a sex-pair dimorphism indistinguishable from that observed in males. The G-banding analysis showed homology between the pattern found in the Y chromosome and that detected in the short arm of the X. The study of C-band distribution showed that several autosome pairs and the X chromosomes had small masses of centromeric heterochromatin. On the other hand, the Y and B chromosomes were C-band negative. The Y-like chromosome in females with dimorphism of the sex pair was also C-band negative. Accordingly these females were considered to be XY and not Xx (the x being an extensively deleted X chromosome).This work was supported by grants from UNESCO, OEA, CONICET and CIC. Requests for reprints should be addressed to N.O. Bianchi.  相似文献   

2.
采用常规空气干燥法制片,对寄生于黄鳝(Monopterus albus)体腔内的胃瘤线虫(Eustrongylidesignotus)染色体核型进行分析。结果表明:胃瘤线虫体细胞有12条染色体,为二倍体,核型公式为2n=12=10 m+2 sm。由5对常染色体和1对性染色体组成,性别决定模式为XX-XY,其中X、Y和1~4号染色体都为中着丝粒染色体,5号为亚中着丝粒染色体。每对染色体都有特定的G-带带型。  相似文献   

3.
Silver-stained preparations of cultured lymphocytes obtained from 12 pure-bred dogs revealed the presence of nucleolus organizer regions (NORs) on four to seven chromosomes in females and five to eight chromosomes in males. All seven males had a NOR on the Y chromosome. The telomeric location of the NORs on the autosomes suggested by an earlier study was confirmed.  相似文献   

4.
为了从选种、杂交改良、疾病诊断以及性别决定的遗传机制等方面为羊驼的繁育与推广提供更为有效的细胞遗传学资料,本试验采用外周血淋巴细胞培养法及胰酶-EDTA法分析了23只胡阿基亚型羊驼(Huacaya alpaca,雌20只,雄3只)的染色体核型及其G-分带,结果表明:羊驼二倍体染色体数目为2n=74,雄性羊驼核型为74,XY;雌性羊驼核型为74,XX。其中,1~20对常染色体为亚端着丝粒染色体,21~36对常染色体为亚中着丝粒染色体和中着丝粒染色体,X为中着丝粒染色体,Y为端着丝粒染色体。G-带分析表明,羊驼G带明暗相间,显现出不同的带纹,且羊驼每对染色体都有其独特的带纹特征,其带纹数目和精细程度随着染色体长度的增加而增加。Abstract: Blood samples from 23 Huacaya alpacas, 3 males and 20 females, were used to study chromosomes and karyotypes, so as to provide some effective cytogenetic bases for the selection, improvement by crossing, disease diagnosis of alpacas, and genetic mechanisms of sex determination. Peripheral blood lymphocyte culture was used to prepare chromosome. A method of trypase-EDTA was used for G-banding. The results showed as follows: The number of diploid chromosomes was 2n=74, with the karyotype 74, XY and 74, XX for males and females respectively. Thirty-six homologous pairs of chromosomes were autosomes, in which chromosomes pairs No.1 to No.20 were acrocentric-subterminal and No.21 to No.36 metacentric-submetacentric. And X chromosome was metacentric, Y chromosome telocentric. The analysis of G-bands showed that bright and dark bands appeared by turn. It showed different bands. And every pair of chromosomes had its distinct band, and the longer the chromosomes, the more the number of bands, and the more clear the bands.  相似文献   

5.
In the males of the olive scale insect, Parlatoria oleae (2n=8), the paternal set of chromosomes becomes heterochromatic during late cleavage or early blastula and remains so until spermatogenesis. Immediately before the onset of meiosis in the males one or more heterochromatic chromosomes disappear from each primary spermatocyte. At prophase four euchromatic and from one to three heterochromatic chromosomes are present in each cell. The disappearance of the heterochromatic chromosomes before meiosis could be due either to the dehetero-chromatization of the heterochromatic chromosomes and their subsequent pairing with their euchromatic homologues, or to the destruction of the heterochromatic chromosomes. — The alternative interpretations of spermatogenesis in P. oleae were tested by using chromosome aberrations, which had been induced in the heterochromatic set by paternal X-irradiation, as genetic markers in breeding tests of about 400 X1 males. Meiosis was examined in X1 males which showed conspicuous chromosomal rearrangements in their somatic cells. The absence of either heteromorphic chromosome pairs or multivalents at spermatogenesis and the failure of the X1 males to transmit any form of chromosome aberration induced by paternal irradiation is strong evidence that the heterochromatic chromosomes are destroyed in P. oleae. — The evolutionary relationships of the chromosome systems in the coccids are considered. Models are outlined for the derivation of a Comstockiella system involving chromosome destruction either from a lecanoid sequence or from a hypothetical Comstockiella sequence involving chromosome pairing. Problems concerning the control of chromosome destruction are discussed.From a dissertation submitted in partial fulfillment of the requirements of Doctor of Philosophy in Genetics.This work was supported by grant GB 8196 from the National Science Foundation to Dr. Spencer W. Brown, and by a National Institutes of Health Fellowship 1 F02 CA 44173-01 to the author from the National Cancer Institute.Dedicated to Dr. Sally Hughes-Schrader on the occasion of her seventy-fifth birthday.  相似文献   

6.
Nur U 《Genetics》1977,87(3):499-512
About 10-15% of the males and females of the grasshopper Melanoplus femur-rubrum collected near Rochester, New York, possessed a supernumerary B chromosome. The frequency of the B chromosome remained fairly constant during the years 1971-1974. The B chromosome was shown previously to be transmitted at a rate of about 0.5 and 0.8 by 1B males and females, respectively. This study was designed to determine the forces preventing the B chromosome from increasing in frequency due to the high rate of transmission by the females. Eighty inseminated females collected in the wild were analyzed cytologically together with their embryos (10-20 per female). Ten of the 80 females had a B chromosome, and they transmitted it at a rate of about 0.75. Among the 983 embryos analyzed, 0.141 had one B, 0.007 had two, and the mean number of B chromosomes per embryo was 0.155. The frequency of the B chromosome in the sperm pool (0.061) was consistent with a 0.5 rate of transmission. Individuals with two B chromosomes apparently have low viability, because about six were expected, but none was found among 851 adult males and females examined. The data suggest that the viability of the 1B individuals was only about 0.86 that of the OB individuals. There was no evidence that the B chromosome increased the fecundity of either the 1B males or females. It was concluded, therefore, that the B chromosome reduced the fitness of all the individuals carrying it and was thus "parasitic," and that it was maintained in the population only because of its high transmission rate. The maintenance of other B chromosomes with high transmission rates is reviewed.  相似文献   

7.
Neotropical fishes have a low rate of chromosome differentiation between sexes. The present study characterizes the first meiotic analysis of sex chromosomes in the order Gymnotiformes. Gymnotus pantanal - females had 40 chromosomes (14m/sm, 26st/a) and males had 39 chromosomes (15m/sm, 24st/a), with a fundamental number of 54 - showed a multiple sexual determination chromosome system of the type X(1)X(1)X(2)X(2)/X(1)X(2)Y. The heterochromatin is restricted to centromeres of all chromosomes of the karyotype. The meiotic behavior of sex chromosomes involved in this system in males is from a trivalent totally pared in the pachytene stage, with a high degree of similarity. The cells of metaphase II exhibit 19 and 20 chromosomes, normal disjunction of sex chromosomes and the formation of balanced gametes with 18 + Y and 18 + X(1)X(2) chromosomes, respectively. The small amount of heterochromatin and repetitive DNA involved in this system and the high degree of chromosome similarity indicated a recent origin of the X(1)X(1)X(2)X(2)/X(1)X(2)Y system in G. pantanal and suggests the existence of a simple ancestral system with morphologically undifferentiated chromosomes.  相似文献   

8.
Genomic imprinting: male mice with uniparentally derived sex chromosomes   总被引:2,自引:0,他引:2  
Although it has been known that there is an X-chromosome imprinting effect during early embryogenesis in female mammals, it remains unknown if parental origin of the X chromosome has an effect in males. Furthermore, it has not been possible to produce animals with normal sex chromosomes of uniparental origin to further evaluate such imprinting effects. We have devised a breeding scheme to produce male mice, designated XPYP males, in which both the X and Y chromosomes are paternally inherited. To our knowledge, these are the first mammals produced that have a normal sex chromosome constitution but with both sex chromosomes derived from one parent. Development and reproduction in these XPYP males and the sex ratio and chromosome constitution of their offspring appeared normal; thus there is no apparent effect in males of having both sex chromosomes derive from one parent or of having the X chromosome derived from an inappropriate parent. Although we have detected no X-chromosome imprinting effect in these males, evidence from other sources suggest that the X chromosome is parentally imprinted. Thus detection and definition of an imprint can depend on the assay used.  相似文献   

9.
Paternal-Sex-Ratio (PSR) is a B chromosome that causes all-male offspring in the parasitoid wasp Nasonia vitripennis. It is only transmitted via sperm of carrier males and destroys the other paternal chromosomes during the first mitotic division of the fertilized egg. Because of haplodiploidy, the effect of PSR is to convert diploid (female) eggs into haploid eggs that develop into PSR-bearing males. The PSR chromosome was previously found to contain several families of repetitive DNA, which appear to be present in local blocks. PSR chromosomes with irradiation-induced deletions have decreased rates of transmission and increased variation in transmission. This study investigates whether these differences in transmission of deletion chromosomes are due to mitotic instability. Two deleton chromosomes (E306 and F316) and the wild-type PSR chromosome were examined. A cytogenetic assay of testes revealed that wild-type PSR males contained the chromosome in 98%–100% of their spermatocytes. Similar counts from carriers of two delection chromosomes were lower and varied between individuals from 50%–100%. One F316 male did not contain the chromosome in any of its spermatocytes although the chromosome was present in somatic tissues based on hybridization to PSR-specific repetitive DNA. A molecular analysis of males found the wild-type PSR chromosome to be present in all somatic tissues. Tissue specific differences in the presence of PSR were found in several males from the two deletion lines. The results show that deletions can result in mosaicism due to increased mitotic instability of PSR. Such individuals sometimes partially or completely fail to transmit the chromosome. Patterns of mosaicism of B chromosomes in other organisms are discussed.by P.B. Moens  相似文献   

10.
The karyotypes of pseudoscorpions of the family Atemnidae (Arachnida: Pseudoscorpiones) were studied for the first time. Karyotype data for 7 species have been obtained. The diploid chromosome numbers of most species considerably exceed the numbers reported in pseudoscorpions so far, with males ranging between 65 and 143. In spite of this, the sex chromosome system of atemnids is characterized by the same features that are found in the majority of other pseudoscorpions with an X0 system; the X chromosome is metacentric and is the largest chromosome or one of the largest chromosomes of the karyotype. Male meiotic cells of Atemnus politus contain 1 or 2 autosome multivalents; most specimens had 2 multivalents. The multivalents were composed of 4, 6, 8 or 10 chromosomes. Multivalent number and structure was consistent within each of the studied individuals. The same number of chromosomes in all of the males examined suggests that multivalents are generated by reciprocal translocations. The high diversity of multivalents suggests considerable range of translocation heterozygosity in the studied population.  相似文献   

11.
The greater glider, currently but incorrectly known as Schoinobates volans, is widely distributed in forested regions in eastern Australia. All animals studied from six different localities had 20 autosomes but there were four chromosomally distinct populations. At Royal National Park, N.S.W., all female greater gliders studied had 22 chromosomes including two large submetacentric X chromosomes with subterminal secondary constrictions in their longer arms. This form of X chromosome occurred also at Bondo State Forest, Myall Lakes and Coff's Harbour, N.S.W., and at Eidsvold, Qld. At Coomooboolaroo, Qld, the X chromosome was also a large submetacentric but a secondary constriction occurred in the shorter arm. Two chromosomally distinct types apparently occur in Royal National Park, one with XY males as in all other populations, and one with XY1Y2 males. Y or Y1, but not Y2, chromosomes were eliminated from the bone marrow in all populations but were present in spermatogonia, primary spermatocytes and cultured fibroblasts. Animals from Bondo State Forest had three or more acrocentric or metacentric supernumerary chromosomes.  相似文献   

12.
Males carrying different X chromosomes were tested for the ability to produce daughters with attached-X chromosomes. This ability is characteristic of males carrying an X chromosome derived from 59b-z, a multiply marked X chromosome, and is especially pronounced in males carrying the unstable 59b-z chromosomes Uc and Uc-lr. Recombination experiments with one of the Uc-lr chromosomes showed that the formation of compound chromosomes depends on two widely separated segments. One of these is proximal to the forked locus and is probably proximal to the carnation locus. This segment may contain the actual site of chromosome attachment. The other essential segment lies between the crossveinless and vermilion loci and may contain multiple factors that influence the attachment process.  相似文献   

13.
A 5-year-old female Walker hound was presented to the Washington State University Veterinary Teaching Hospital as a result of a narrowing of the vulva, which prevented natural breeding. All other physical and clinical findings were normal. Cytogenetic analysis disclosed a chromosome number of 77, with three metacentric chromosomes comprised of two X chromosomes and a Robertsonian translocation of two acrocentric autosomes, chromosomes 21 and 33. Cytogenetic analysis of two full-sister siblings with histories of absence of estrus disclosed one with the same translocation and one with a normal female chromosome constitution. The propositus was artificially inseminated with semen from a karyotypically normal male Walker hound and gave birth to nine live grossly normal pups, six females and three males. Another female pup was stillborn but was grossly normal. Cytogenetic analysis of the live pups disclosed that four (three males and one female) of the nine had the same translocation in all lymphocytes. The remaining five pups (five females) had normal female chromosome constitutions. The litter size was average for this breed. This is a previously unreported Robertsonian translocation in dogs.  相似文献   

14.
Mating activity of 115 wild males was compared with 88 homozygotes and 42 heterozygotes for their second chromosomes. Wild males, 48–96 hours old, inseminated on the average, 4.4±0.1 females per 24 hours. The hetero- and homozygotes for their second chromosomes (other chromosomes being randomly combined with those from the laboratory strain), inseminated on the average 2.8±0.2 and 2.0±0.2 females/24 h. respectively. There is no correlation between homozygotes and heterozygotes for the second chromosome and their wild ancestors which carried these chromosomes. Wild second chromosomes which in homozygous condition produced total sterility of their carriers, and some others which made for an unusually high activity in homozygous males, had on an average similar effects in wild carriers.This ariicle is warmly dedicated to Professor Theodosius Dobzhansky.  相似文献   

15.
16.
THE EVOLUTION OF HETEROMORPHIC SEX CHROMOSOMES   总被引:2,自引:0,他引:2  
The facts and ideas which have been discussed lead to the following synthesis and model. 1. Heteromorphic sex chromosomes evolved from a pair of homomorphic chromosomes which had an allelic difference at the sex-determining locus. 2. The first step in the evolution of sex-chromosome heteromorphism involved either a conformational or a structural difference between the homologues. A structural difference could have arisen through a rearrangement such as an inversion or a translocation. A conformational difference could have occurred if the sex-determining locus was located in a chromosomal domain which behaved as a single control unit and involved a substantial segment of the chromosome. It is assumed that any conformational difference present in somatic cells would have been maintained in meiotic prophase. 3. Lack of conformational or structural homology between the sex chromosomes led to meiotic pairing failure. Since pairing failure reduced fertility, mechanisms preventing it had a selective advantage. Meiotic inactivation (heterochromatinization) of the differential region of the X chromosome in species with heterogametic males and euchromatinization of the W in species with heterogametic females are such mechanisms, and through them the pairing problems are avoided. 4. Structural and conformational differences between the sex chromosomes in the heterogametic sex reduced recombination. In heterogametic males recombination was reduced still further by the heterochromatinization of the X chromosome, which evolved in response to selection against meiotic pairing failure. 5. Suppression of recombination resulted in an increase in the mutation rate and an increased rate of fixation of deleterious mutations in the recombination-free chromosome regions. Functional degeneration of the genetically isolated regions of the Y and W was the result. In XY males this often led to further meiotic inactivation of the differential region of the X chromosome, and in this way an evolutionary positive-feedback loop may have been established. 6. Structural degeneration (loss of material) followed functional degeneration of Y or W chromosomes either because the functionally degenerate genes had deleterious effects which made their loss a selective advantage, or because shorter chromosomes were selectively neutral and became fixed by chance. 7. The evolutionary routes to sex-chromosome heteromorphism in groups with female heterogamety are more limited than in those with male heterogamety. Oocytes are usually large and long-lived, and are likely to need the products of X- or Z-linked genes. Meiotic inactivation of these chromosomes is therefore unlikely. In the oocytes of ZW females, meiotic pairing failure is avoided through euchromatinization of the W rather than heterochromatinization of the Z chromosome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Methaphase chromosomes from karyotypically normal adult humans (three males, six females) and one male with a 13p - chromosome were stained by quinacrine and then by the Ag-AS silver staining method to reveal nucleolus organizer regions (NORs). Each person had a characteristic number of Ag-stained chromosomes per cell, always fewer than 10. Determination of the mean Ag-size of each chromosome showed that each of the 10 individuals had a unique distribution of Ag-stain. Within each individual, there was some variation from cell to cell in the number of acrocentric chromosomes that were Ag-stained; this was not random, and the same chromosomes (those that had at most a small amount of Ag-stain) tended to be unstained in every cell. Satellite associations were scored on the same cells. Chromosomes that had no Ag-stain were involved in satellite association less than 20% as often as those that had some Ag-stain. Chromosomes that had a small amount of Ag-stain were involved in association about 50% as often as those that had a large amount of stain. Regression analysis of the 50 (of a total of 100) acrocentric chromosomes which could be individually identified by quinacrine markers showed that the frequency with which a chromosome was involved in satellite association was strongly correlated with the amount of Ag-stained material in the NOR.  相似文献   

18.
In the mouse XYY males are sterile, presumably because pairing abnormalities resulting from the presence of three sex chromosomes lead to meiotic breakdown. We have produced male mice, designated XYY*X, that have three sex chromosome pairing regions but only one intact Y chromosome. Unexpectedly XYY*X males are fertile, although they are no more efficient in sex chromosome pairing than previously reported XYY males. We conclude that the sterility of XYY males is caused by a combination of the deleterious effect of two Y chromosomes, presumably acting prior to meiosis, and pairing abnormalities resulting in significant meiotic disruption.by P.B. Moens  相似文献   

19.
《遗传学报》2022,49(2):109-119
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of “evolutionary strata”. Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in the older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate such “defeminization” of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females rather than males, which evolved in their common ancestors.  相似文献   

20.
D. G. Bedo 《Chromosoma》1982,87(1):21-32
Non banded sex chromosome elements have been identified in polytene trichogen cells of Lucilia cuprina using Y-autosome translocations, C-banding and Quinacrine fluorescence. The X chromosome is an irregular granular structure while the much smaller Y chromosome has both a dense darkly stained and a loosely organised segment. The X and Y chromosomes are underreplicated in polytene cells but comparison of C- and Q-banding characteristics of sex chromosomes in diploid and polytene tissues indicates that selective replication of non C-banding material occurs in both the sex chromosomes. Brightly fluorescing material in the Y chromosome is replicated to such an extent that it consists of half the polytene element, while the C-banding material, which makes up most of the diploid X chromosome, is virtually unreplicated. Differential replication also occurs in autosomes. In XXY males, and in males carrying a duplication of the X euchromatic region, a short uniquely banded polytene chromosome is formed. It is suggested that in males carrying two doses of X euchromatin a dosage compensation mechanism operates in which genes in one copy are silenced by forming a banded polytene chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号