首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To expand the industrial applications of Candida antarctica lipase B (CALB), we developed Aspergillus oryzae whole-cell biocatalyst expressing the lipase-encoding gene from C. antarctica. A. oryzae niaD300, which was derived from the wild type strain RIB40, was used as the host strain. The CALB gene was isolated from C. antarctica CBS6678 and expression plasmids were constructed with and without secretion signal peptide. The lipase gene was expressed under the control of improved glaA and pNo-8142 promoters of plasmids pNGA142 and pNAN8142, respectively. The Southern blot analysis demonstrated the successful integration of the CALB gene in the genome of A. oryzae. To determine the role of signal peptide, the expression plasmids were constructed with homologous and heterologous secretion signal sequences of triacylglycerol lipase gene (tglA) from A. oryzae and lipase B (CALB) from C. antarctica, respectively. The C-terminal FLAG tag does not alter the catalytic properties of the lipase enzyme and Western blotting analysis using anti-FLAG antibodies demonstrated the presence of cell wall and membrane bound lipase responsible for the biocatalytic activity of the whole-cell biocatalyst. The resultant recombinant A. oryzae was immobilized within biomass support particles (BSPs) made of polyurethane foam (PUF) and the BSPs were successfully used for the hydrolysis of para-nitrophenol butyrate (p-NPB) and for the optical resolution of (RS)-1-phenyl ethanol by enantioselective transesterification with vinyl acetate as acyl donor.  相似文献   

2.
To prepare a whole-cell biocatalyst of a stable lipase at a low price, mutated Candida antarctica lipase B (mCALB) constructed on the basis of the primary sequences of CALBs from C. antarctica CBS 6678 strain and from C. antarctica LF 058 strain was displayed on a yeast cell surface by α-agglutinin as the anchor protein for easy handling and stability of the enzyme. When mCALB was displayed on the yeast cell surface, it showed a preference for short chain fatty acids, an advantage for producing flavors; although when Rhizopus oryzae lipase (ROL) was displayed, the substrate specificity was for middle chain lengths. When the thermal stability of mCALB on the cell surface was compared with that of ROL on a cell surface, T 1/2, the temperature required to give a residual activity of 50% for heat treatment of 30 min, was 60°C for mCALB and 44°C for ROL indicating that mCALB displayed on cell surface has a higher thermal stability. Furthermore, the activity of the displayed mCALB against p-nitrophenyl butyrate was 25-fold higher than that of soluble CALB, as reported previously. These findings suggest that mCALB-displaying yeast is more practical for industrial use as the whole-cell biocatalyst.  相似文献   

3.
The transphosphatidylation and hydrolytic activities of phospholipase d in culture supernatants of soil isolates were evaluated by a specific spectrophotometric method for quantitative determination using an artifical substrate, phosphatidyl-p-nitrophenol. Phospholipase d from strain TH-2 showed the highest specific activity and ratio of transphosphatidylation activity to hydrolytic activity among those from the eight soil isolates and commercial Actinomycetes phospholipase d.  相似文献   

4.
The purified lipase from Burkholderia cepacia was immobilised on a porous polypropylene support and its biocatalytic properties were compared with those of the free enzyme in organic media. For both lipase preparations, the rate of p-nitrophenyl ester hydrolysis in n-heptane was not restricted by mass transfer limitations. The immobilisation changed neither the temperature at which the reaction rate was maximal, nor the activation energy of the reaction. The enzyme stability was slightly decreased (1.3-fold) upon immobilisation. Moreover, the immobilised enzyme displayed fewer variations of activity with fatty acid chain length. Interestingly, for all the different p-nitrophenyl esters used, the immobilised enzyme was more active (from 5.8- to 18.9-fold) than the free enzyme. Therefore, it would be very useful to use B. cepacia lipase immobilised onto porous polypropylene for applications in organic media, as it displayed high activities on a larger range of substrates. Received: 8 February 1999 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

5.
A colorimetric method for the determination of lipase activity in soil has been developed. Using p-nitrophenyl butyrate as substrate, soil samples are incubated at 30°C and pH 7.25 for 10 min. After cooling on ice and centrifugation, the released p-nitrophenol is determined at 400 nm. To allow for the adsorption of p-nitrophenol onto soil, a calibration curve is prepared in the presence of soil.  相似文献   

6.
The 1-O-lauroyl- -mannitol, a non-ionic surfactant, was synthesised via a chemo-enzymatic pathway starting from the 1,2:4,5-di-O-isopropylidene- -mannitol and vinyl laurate as acylation agent. The high hydrophobicity of the substrates allowed the enzymatic reaction to occur both in n-hexane and in solvent free conditions. The immobilised Candida antarctica lipase B was used as the catalyst of the enzymatic step. This enzyme acts differently depending on the position of the hydroxyls with respect to the isopropylidene groups. The acid selective hydrolysis of the isopropylidene groups gave the non-ionic surfactant without the presence of isomers.  相似文献   

7.
Effects of reaction media, alcohols and water on the enzyme activity of the immobilised Candida antarctica lipase were investigated for the separation of racemic flurbiprofen by an esterification reaction catalysed by immobilised enzyme in organic media. The S-enantiomer of flurbiprofen was directly resolved by the immobilised lipase esterification reaction in acetonitrile. Ping-Pong Bi–Bi kinetics were found to fit the initial reaction well of all the experimental runs. Model parameters for the reaction kinetics were evaluated from experiments at relatively low substrate concentrations, have shown to be applicable for preparative separation scale at high concentrations. Finally, the gram-scale production of single enantiomer with the optical purity of 93% e.e. was obtained.  相似文献   

8.
A new lipase gene designated as SlLipA was isolated from Serratia liquefaciens S33 DB-1 by the genomic-walking method. The cloned gene contained an open reading frame (ORF) of 1,845 bp encoding 615 amino acids with a conserved GXSXG motif. Genome sequence analysis showed that an aldo/keto reductase gene closed to the SlLipA gene. The lipase gene was cloned into the expression vector pPICZαA and successfully integrated into the heterologous host, methylotrophic yeast Pichia pastoris GS115. Five transformants could be expressed as secreted recombinant proteins with the high activity on Triglyceride–Agarose plate and as candidates to produce the recombinant enzyme. A C-terminal His tag was used for its purification. The lipase activity of different transformants against substrate para-nitrophenyl laurate (p-NPL) varied from 14 to 16 U ml−1. For the substrates para-nitrophenyl caprate (p-NPC), p-NPL, para-nitrophenyl myristate (p-NPM), para-nitrophenyl palmitate (p-NPP), and para-nitrophenyl stearate (p-NPS), the specific activity was shown to be preferred to long acyl chain length of p-NPS.  相似文献   

9.
A soil bacterium capable of utilizing methyl parathion as sole carbon and energy source was isolated by selective enrichment on minimal medium containing methyl parathion. The strain was identified as belonging to the genus Serratia based on a phylogram constructed using the complete sequence of the 16S rRNA. Serratia sp. strain DS001 utilized methyl parathion, p-nitrophenol, 4-nitrocatechol, and 1,2,4-benzenetriol as sole carbon and energy sources but could not grow using hydroquinone as a source of carbon. p-Nitrophenol and dimethylthiophosphoric acid were found to be the major degradation products of methyl parathion. Growth on p-nitrophenol led to release of stoichiometric amounts of nitrite and to the formation of 4-nitrocatechol and benzenetriol. When these catabolic intermediates of p-nitrophenol were added to resting cells of Serratia sp. strain DS001 oxygen consumption was detected whereas no oxygen consumption was apparent when hydroquinone was added to the resting cells suggesting that it is not part of the p-nitrophenol degradation pathway. Key enzymes involved in degradation of methyl parathion and in conversion of p-nitrophenol to 4-nitrocatechol, namely parathion hydrolase and p-nitrophenol hydroxylase component “A” were detected in the proteomes of the methyl parathion and p-nitrophenol grown cultures, respectively. These studies report for the first time the existence of a p-nitrophenol hydroxylase component “A”, typically found in Gram-positive bacteria, in a Gram-negative strain of the genus Serratia. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
1-Pentyl, 1-hexyl and 1-heptyl ferulates were continuously synthesized at 60–90°C using a reactor system in which a column packed with ferulic acid powders and another column packed with immobilized Candida antarctica lipase particles were connected in series. Conversions greater than 0.9 were achieved for the synthesis of the 1-hexyl and 1-heptyl ferulates at 90°C. The system could be stably operated for the 1-heptyl ferulate synthesis at 90°C for at least two weeks.  相似文献   

11.
Summary The strictly anaerobic bacterium Clostridium tetanomorphum formed an extracellular lipase when the growth medium contained glycerol in addition to fermentable substrates such as l-glutamate or glucose. The lipase was purified from the concentrated culture supernatant and exhibited a final specific activity of 900 U/mg. The purified lipase had a Stokes’ radius of 5.0 nm and a sedimentation coefficient of 5.7S. The native molecular mass calculated from these values was 118,000 Da, which is considerably higher than the molecular mass calculated by PAGE (70,000 Da). With p-nitrophenyl esters of different fatty acids as substrates enzyme activity was highest when the acyl chain was short (C2). The purified lipase showed no protease or thioesterase activity.  相似文献   

12.
In this work, the stabilizing effect of bovine serum albumin (BSA), peptone (PEP), and polyethylene glycol (PEG) during immobilization of Candida antarctica lipase on activated carbon was investigated. The influence of enzyme concentration and type of additive, added during the immobilization procedure, was studied using a 22 factorial central composite design. The goal was to maximize the synthetic activity of butyl butyrate, using butyric acid and butanol as substrate in n-heptane. An increase of 31–58% in the esterification activity was obtained when enzyme concentration on the supernatant was enhanced from 86.50 U m L−1 to 226.80 U mL−1. An enhancement in esterification activity of 38–68.95% was observed, depending on the initial enzyme concentration, when PEP was used instead of BSA. No significant increase in the esterification activity was observed when PEP was replaced by PEG. However, thermal stability tests at 50 °C showed that PEG had a higher stabilizing effect.  相似文献   

13.
The lipase-catalysed kinetic resolution of secondary alcohols was studied using vinyl acetate as acyl donor in propylene carbonate. Propylene carbonate offers an environmentally friendly alternative in contrast to conventional solvents. Several different lipases were investigated, and Candida antarctica lipase B (CALB) exhibited better results for all the substrates. It was shown that the addition of non-reactive base triethylamine and silver oxide to the reaction mixture enhanced the reaction rate and enantioselectivity. With propylene carbonate as solvent, CALB could be recycled without significant activity or enantioselectivity losses.  相似文献   

14.
Sun S  Shan L  Jin Q  Liu Y  Wang X 《Biotechnology letters》2007,29(6):945-949
A process was optimized for the enzymatic synthesis of glyceryl ferulate with a yield of up to 96% using a vacuum-rotary evaporation strategy under following conditions: 15 mmol glycerol, 1.5 mmol ethyl ferulate, 170 mg Candida antarctica lipase, at 60°C for 10 h and under a vacuum of 10 mm Hg. The immobilized lipase can be used 10 times.  相似文献   

15.
Two isoforms of Candida rugosalipase B (LB1 and LB2) were purified by anionic exchange chromatography. The lipases had the same N-terminal sequence, carbohydrate content and pH and thermal stability but different pIs and significant differences in their activities against different p-nitrophenol esters and triacylglycerides.  相似文献   

16.
A novel enzymatic method for preparing water-soluble derivatives of salicylic acid catalyzed by immobilized lipase was described. This study is the first to describe the enzymatic transesterification of methyl salicylate in organic solvents with different hydroxyl donors. The acyl-transfer between methyl salicylate and sorbitol was best supported by solvents of log P values –0.33 to 1.4. With Candida antarctica lipase in tert-amyl alcohol, a sorbitol conversion yield of 98% can be obtained by transesterification with sorbitol and methyl salicylate in one step.  相似文献   

17.
Vibrio sp. GMD509, a marine bacterium isolated from eggs of the sea hare, exhibited lipolytic activity on tributyrin (TBN) plate, and the gene representing lipolytic activity was cloned. As a result, an open reading frame (ORF) consisting of 1,017 bp (338 aa) was found, and the deduced amino acid sequence of the ORF showed low similarity (<20%) to α/β hydrolases such as dienelactone hydrolases and esterase/lipase with G–X1–S–X2–G sequence conserved. Phylogenetic analysis suggested that the protein belonged to a new family of esterase/lipase together with various hypothetical proteins. The enzyme was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme (Vlip509) showed the best hydrolyzing activity toward p-nitrophenyl butyrate (C4) among various p-nitrophenyl esters (C2 to C18), and optimal activity of Vlip509 occurred at 30°C and pH 8.5, respectively. Kinetic parameters toward p-nitrophenyl butyrate were determined as K m (307 μM), k cat (5.72 s−1), and k cat/K m (18.61 s−1 mM−1). Furthermore, Vlip509 preferentially hydrolyzed the S-enantiomer of racemic ofloxacin ester. Despite its sequence homology to dienelactone hydrolase, Vlip509 showed no dienelactone hydrolase activity. This study represents the identification of a novel lipolytic enzyme from marine environment.  相似文献   

18.
A study was made on the use of a mixed microalgal consortium to degrade p-nitrophenol. The consortium was obtained from a microbial community in a waste container fed with the remains and by-products of medium culture containing substituted aromatic pollutants (nitrophenols, chlorophenols, fluorobenzene). After selective enrichment with p-nitrophenol (p-NP), followed by an antibiotic treatment, an axenic microalgal consortium was recovered, which was able to degrade p-nitrophenol. At a concentration of 50 mg L–1, total degradation occurred within 5 days. Two species, Chlorella vulgaris var. vulgaris f. minuscula and Coenochloris pyrenoidosa, were isolated from the microalgal consortium. The species were able to accomplish p-NP biodegradation when cultured separately, although Coenochloris pyrenoidosa was more efficient, achieving the same degradation rate as the original axenic microalgal consortium. When Coenochloris pyrenoidosa was associated with Chlorella vulgaris in a 3:1 ratio, complete removal of the nitro-aromatic compound occurred within three days. This is apparently the first report on the degradation of a nitro-aromatic compound by microalgae.  相似文献   

19.
The present study was conducted to investigate the capability of Haloarcula marismortui to synthesize esterases and lipases, and the effect of physicochemical conditions on the growth and the production of esterases and lipases. Finally, the effect of NaCl concentration and temperature on esterase and lipase activities was studied using intracellular crude extracts. In order to confirm the genomic prediction about the esterase and lipase synthesis, H. marismortui was cultured on a rich medium and the crude extracts (intra- or extracellular) obtained were assayed for both activities using p-nitrophenyl esters and triacylglycerides as substrates. Studies on the kinetics of growth and production of esterase and lipase of H. marismortui were performed, reaching a maximum growth rate of 0.053 h−1 and maximal productions of intracellular esterase and lipase of 2.094 and 0.722 U l−1 using p-nitrophenyl valerate and p-nitrophenyl laurate, respectively. Both enzymes were produced as growth-associated metabolites. The effects of temperature, pH, and NaCl concentration on the growth rate and production of enzymes were studied by using a Box–Behnken response surface design. The three response variables were significantly influenced by the physicochemical factors and an interaction effect between temperature and NaCl concentration was also evidenced. The surface response method estimated the following maximal values for growth rate and productions of esterase and lipase: 0.086 h−1 (at 42.5°C, pH 7.4, and 3.6 mol l−1 NaCl), 2.3 U l−1 (at 50°C, pH 7.5, and 4.3 mol l−1 NaCl), and 0.58 U l−1 (at 50°C, pH 7.6, and 4.5 mol l−1 NaCl), respectively. Esterases were active at different salt concentrations, showing two optimal activities (at 0.5 and 5 mol l−1 NaCl), which suggested the presence of two different esterases. Interestingly, in the absence of salt, esterase retained 50% residual activity. Esterases and lipase activities were maximal at 45°C and inactive at 75°C. This study represents the first report evidencing the synthesis of esterase and lipase by H. marismortui.  相似文献   

20.
The present work reports the preparation of activated carbon fiber (ACF) from Kenaf natural fibers. Taguchi experimental design method was used to optimize the preparation of ACF using K2HPO4. Optimized conditions were: carbonization at 300 °C, impregnation with 30% w/v K2HPO4 solution and activation at 700 °C for 2 h with the rate of achieving the activation temperature equal to 2 °C min−1. The surface characteristics of the ACF prepared at optimized conditions were also studied using pore structure analysis, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Pore structure analysis shows that micropores constitute the most of the porosity of the prepared ACF. The ability of the ACF prepared at optimized conditions to adsorb phenol and p-nitrophenol from aqueous solution was also investigated. The equilibrium data of phenol and p-nitrophenol adsorption on the prepared ACF were well fitted to the Langmuir isotherm. The maximum adsorption capacities of phenol and p-nitrophenol on the prepared ACF are 140.84 and 136.99 mg g−1, respectively. The adsorption process follows the pseudo-first-order kinetic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号