首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptic inhibition in an isolated nerve cell   总被引:5,自引:0,他引:5       下载免费PDF全文
Following the preceding studies on the mechanisms of excitation in stretch receptor cells of crayfish, this investigation analyzes inhibitory activity in the synapses formed by two neurons. The cell body of the receptor neuron is located in the periphery and sends dendrites into a fine muscle strand. The dendrites receive innervation through an accessory nerve fiber which has now been established to be inhibitory. There exists a direct peripheral inhibitory control mechanism which can modulate the activity of the stretch receptor. The receptor cell which can be studied in isolation was stimulated by stretch deformation of its dendrites or by antidromic excitation and the effect of inhibitory impulses on its activity was analyzed. Recording was done mainly with intracellular leads inserted into the cell body. 1. Stimulation of the relatively slowly conducting inhibitory nerve fiber either decreases the afferent discharge rate or stops impulses altogether in stretched receptor cells. The inhibitory action is confined to the dendrites and acts on the generator mechanism which is set up by stretch deformation. By restricting depolarization of the dendrites above a certain level, inhibition prevents the generator potential from attaining the "firing level" of the cell. 2. The same inhibitory impulse may set up a postsynaptic polarization or a depolarization, depending on the resting potential level of the cell. The membrane potential at which the inhibitory synaptic potential reverses its polarity, the equilibrium level, may vary in different preparations. The inhibitory potentials increase as the resting potential is displaced in any direction from the inhibitory equilibrium. 3. The inhibitory potentials usually rise to a peak in about 2 msec. and decay in about 30 msec. After repetitive inhibitory stimulation a delayed secondary polarization phase has frequently been seen, prolonging the inhibitory action. Repetitive inhibitory excitation may also be followed by a period of facilitation. Some examples of "direct" excitation by the depolarizing action of inhibitory impulses are described. 4. The interaction between antidromic and inhibitory impulses was studied. The results support previous conclusions (a) that during stretch the dendrites provide a persisting "drive" for the more central portions of the receptor cell, and (b) that antidromic all-or-none impulses do not penetrate into the distal portions of stretch-depolarized dendrites. The "after-potentials" of antidromic impulses are modified by inhibition. 5. Evidence is presented that inhibitory synaptic activity increases the conductance of the dendrites. This effect may occur in the absence of inhibitory potential changes.  相似文献   

2.
Dorsal ocelli are small cup-like organs containing a layer of photoreceptor cells, the short axons of which synapse at the base of the cup with dendritic terminals of ocellar nerve fibers. The ocellar ERG of dragonflies, recorded from the surface of the receptor cell layer and from the long lateral ocellar nerve, contains four components. Component 1 is a depolarizing sensory generator potential which originates in the distal ends of the receptor cells and evokes component 2. Component 2 is believed to be a depolarizing response of the receptor axons. It evokes a hyperpolarizing postsynaptic potential, component 3, which originates in the dendritic terminals of the ocellar nerve fibers. Ocellar nerve fibers in dragonflies are spontaneously active, discharging afferent nerve impulses (component 4) in the dark-adapted state. Component 3 inhibits this discharge. The ERG of the cockroach ocellus is similar. The main differences are that component 3 is not as conspicuous as in the dragonflies and that in most cases ocellar nerve impulses appear only as a brief burst at "off." In one preparation a spontaneous discharge of nerve impulses was observed. As in the dragonflies, this was inhibited by illumination.  相似文献   

3.
Large nerve fibers in the ocellar nerves of dragonflies are spontaneously active. In the absence of inhibitory influence the spontaneous activity is rhythmic. Inhibition occurs in the dark-adapted state and during illumination. Miniature inhibitory postsynaptic potentials occur in the dark-adapted state. These modulate by temporary suppression the otherwise rhythmic discharge of ocellar nerve impulses. The presence of random spontaneous receptor cell excitations is inferred from the presence of the miniature i.p.s.p.'s. Light stimulates many or all the receptor cells simultaneously, masking the random spontaneous activity of individual receptor cells. The result is a sustained hyperpolarizing i.p.s.p. and sustained inhibition of the nerve discharge. Preceding resumption of the spontaneous activity at "off" the i.p.s.p. may oscillate, overshoot the baseline as a negative after-potential, or do both. These phases of the off-effect may generate nerve impulses in an off-burst.  相似文献   

4.
Inhibition in the eye of Limulus   总被引:4,自引:0,他引:4       下载免费PDF全文
In the compound lateral eye of Limulus each ommatidium functions as a single receptor unit in the discharge of impulses in the optic nerve. Impulses originate in the eccentric cell of each ommatidium and are conducted in its axon, which runs without interruption through an extensive plexus of nerve fibers to become a fiber of the optic nerve. The plexus makes interconnections among the ommatidia, but its exact organization is not understood. The ability of an ommatidium to discharge impulses in the axon of its eccentric cell is reduced by illumination of other ommatidia in its neighborhood: the threshold to light is raised, the number of impulses discharged in response to a suprathreshold flash of light is diminished, and the frequency with which impulses are discharged during steady illumination is decreased. Also, the activity that can be elicited under certain conditions when an ommatidium is in darkness can be inhibited similarly. There is no evidence for the spread of excitatory influences in the eye of Limulus. The inhibitory influence exerted upon an ommatidium that is discharging impulses at a steady rate begins, shortly after the onset of the illumination on neighboring ommatidia, with a sudden deep minimum in the frequency of discharge. After partial recovery, the frequency is maintained at a depressed level until the illumination on the neighboring receptors is turned off, following which there is prompt, though not instantaneous recovery to the original frequency. The inhibition is exerted directly upon the sensitive structure within the ommatidium: it has been observed when the impulses were recorded by a microelectrode thrust into an ommatidium, as well as when they were recorded more proximally in single fibers dissected from the optic nerve. Receptor units of the eye often inhibit one another mutually. This has been observed by recording the activity of two optic nerve fibers simultaneously. The mediation of the inhibitory influence appears to depend upon the integrity of nervous interconnections in the plexus: cutting the lateral connections to an ommatidium abolishes the inhibition exerted upon it. The nature of the influence that is mediated by the plexus and the mechanism whereby it exerts its inhibitory action on the receptor units are not known. The depression of the frequency of the discharge of nerve impulses from an ommatidium increases approximately linearly with the logarithm of the intensity of illumination on receptors in its vicinity. Inhibition of the discharge from an ommatidium is greater the larger the area of the eye illuminated in its vicinity. However, equal increments of area become less effective as the total area is increased. The response of an ommatidium is most effectively inhibited by the illumination of ommatidia that are close to it; the effectiveness diminishes with increasing distance, but may extend for several millimeters. Illumination of a fixed region of the eye at constant intensity produces a depression of the frequency of discharge of impulses from a nearby ommatidium that is approximately constant, irrespective of the level of excitation of the ommatidium. The inhibitory interaction in the eye of Limulus is an integrative process that is important in determining the patterns of nervous activity in the visual system. It is analogous to the inhibitory component of the interaction that takes place in the vertebrate retina. Inhibitory interaction results in the exaggeration of differences in sensory activity from different regions of the eye illuminated at different intensities, thus enhancing visual contrast.  相似文献   

5.
1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve 'on' activity in numerous small afferent fibres and repetitive 'off' bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the 'on' afferents, antidromically activated) can evoke a burst of impulses in the larger 'off' fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked 'off' bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive 'off' bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked 'off' bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the 'off' fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors.  相似文献   

6.
In anesthetized immobilized frog we recorded changes in hind leg volume evoked by electrical stimulation of peripheral end of the sciatic nerve. The ranges of the stimulus amplitudes sufficient to induce vasodilator or vasoconstrictor reactions were estimated. In a separate set of experiments thresholds of A alpha beta, A delta and C-afferent fibers excitation were evaluated by recording waves of compound action potentials in VIII-X dorsal roots. It was found that vasodilation is elicited by the stimuli of virtually the same intensity range as the excitation of A delta afferent fibers, including low threshold one. Consequently we concluded that in frog these myelinated afferent fibers are capable of dilating the blood vessels by antidromic action. This finding is in contrast with antidromic vasodilation in mammals which is known to result mainly from the impulses of the unmyelinated afferent fibers.  相似文献   

7.
Mode of Operation of Ampullae of Lorenzini of the Skate, Raja   总被引:5,自引:4,他引:1       下载免费PDF全文
Ampullae of Lorenzini are sensitive electroreceptors. Applied potentials affect receptor cells which transmit synaptically to afferent fibers. Cathodal stimuli in the ampullary lumen sometimes evoke all-or-none "receptor spikes," which are negative-going recorded in the lumen, but more frequently they evoke graded damped oscillations. Cathodal stimuli evoke nerve discharge, usually at stimulus strengths subthreshold for obvious receptor oscillations or spikes. Anodal stimuli decrease any ongoing spontaneous nerve activity. Cathodal stimuli evoke long-lasting depolarizations (generator or postsynaptic potentials) in afferent fibers. Superimposed antidromic spikes are reduced in amplitude, suggesting that the postsynaptic potentials are generated similarly to other excitatory postsynaptic potentials. Anodal stimuli evoke hyperpolarizations of nerves in preparations with tonic activity and in occasional silent preparations; presumably tonic release of excitatory transmitter is decreased. These data are explicable as follows: lumenal faces of receptor cells are tonically (but asynchronously) active generating depolarizing responses. Cathodal stimuli increase this activity, thereby leading to increased depolarization of and increased release of transmitter from serosal faces, which are inexcitable. Anodal stimuli act oppositely. Receptor spikes result from synchronized receptor cell activity. Since cathodal stimuli act directly to hyperpolarize serosal faces, strong cathodal stimuli overcome depolarizing effects of lumenal face activity and are inhibitory. Conversely, strong anodal stimuli depolarize serosal faces, thereby causing release of transmitter, and are excitatory. These properties explain several anomalous features of responses of ampullae of Lorenzini.  相似文献   

8.
Interactions of peripheral inputs to the motoneuron of the kitten fetus as young as 3 weeks prenatal were studied by reflex discharge from the ventral root as well as by recording from single motoneurons. Facilitation was found between two synergists in fetuses 1 to 2 weeks before birth. Intracellular recording showed that the facilitation could be explained by summation of excitatory postsynaptic potentials. Inhibition was found between antagonists in the fetuses 2 to 3 weeks before birth and was accompanied by inhibitory postsynaptic potentials. Recurrent inhibition was very powerful in the fetal spinal cord as shown by large motoneuron hyperpolarization by antidromic stimulation. Cells presumed to be "Renshaw cells" and which responded to both ortho- and antidromic stimulation with repetitive firing were shown in the 2 weeks prenatal fetus. These results lead to the conclusion that there is considerable effective synaptic connection of afferent collaterals already established by the later stage of intrauterine life and that this may be achieved independently of external stimuli.  相似文献   

9.
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.  相似文献   

10.
A study of activity recorded with intracellular micropipettes was undertaken in the caudal abdominal ganglion of the crayfish in order to gain information about central fiber to fiber synaptic mechanisms. This synaptic system has well developed integrative properties. Excitatory post-synaptic potentials can be graded, and synaptic potentials from different inputs can sum to initiate spike discharge. In most impaled units, the spike discharge fails to destroy the synaptic potential, thereby allowing sustained depolarization and multiple spike discharge following single pulse stimulation to an afferent input. Some units had characteristics which suggest a graded threshold for spike generation along the post-synaptic fiber membrane. Other impaled units responded to afferent stimulation with spike discharges of two distinct amplitudes. The smaller or "abortive" spikes in such units may represent non-invading activity in branches of the post-synaptic axon. On a few occasions one afferent input was shown to inhibit the spike discharge initiated by another presynaptic input.  相似文献   

11.
Analysis of afferent activity in unmyelinated fibers of a cutaneous nerve was carried out by the colliding impulses method in cats. The effect of antidromic excitation of the nerve and mechanical stimulation of the receptors on subsequent orthodromic activity during stretching of the skin was investigated. Both these factors were shown to reduce subsequent orthodromic activity evoked by testing stimulation. The reduction in activity was greatest 10–15 sec after stimulation. The duration of the inhibitory effect was greater after mechanical than after antidromic stimulation. Combined mechanical stimulation and antidromic excitation resulted in a greater decrease of afferent activity and an increase in the time of its recovery. An increase in the frequency of antidromic excitation potentiated the inhibitory effect of preliminary stimulation on orthodromic activity in C fibers.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii Gor'kii State University. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 307–312, May–June, 1977.  相似文献   

12.
Summary In electric fish of the family Mormyridae some primary afferent fibers conduct impulses not only from electroreceptors to the brain but also from the brain to the receptors. The efferent impulses may be elicited by electrical stimulation which is within the physiological range, i.e., by stimulation which is similar in amplitude and duration to the stimulation that is caused by the fish's own electric organ discharge. Afferent and efferent impulses in the same afferent fiber were identified by: simultaneously recording from a fiber at two different points, at the receptor and at the nerve trunk (Figs. 2C-H; 3B-D); by cutting the afferent fiber between the brain and the recording site as well as between the recording site and the periphery; and by intra-axonal recording from the afferent fiber near its entry into the brain (Fig. 4). The efferent impulses result from the central integration of a corollary discharge of the electric organ motor command with excitatory and inhibitory input from several different receptors near the one from which afferent impulses originate (Fig. 4). The centrally originating impulse may be capable of modifying the effect of signals originating in the periphery.Abbreviations ELLL electrosensory lateral line lobe - EOCD electric organ corollary discharge - EOD electric organ discharge - epsp excitatory postsynaptic potential - NPLL posterior lateral line nerve  相似文献   

13.
The possible interaction among different sensory units in the frog tongue was studied using several single papillae dually innervated by the medial and lateral branches of the glossopharyngeal (IXth) nerve. The afferent activity in one branch exposed to NaCl stimulation of the papilla revealed marked inhibition after antidromic electrical stimulation (100 Hz, 30 s, and 3 V) of the other branch. The degree of inhibition depended on the number of sensory responses observed in the electrically stimulated branch as well as the nature of the stimulated sensory units. Statistical analysis suggested that antidromic activation of gustatory units conducting the responses to NaCl and quinine and slowly adapting mechanosensitive units produced a large antidromic inhibition amounting to 19-25%, but that of gustatory units conducting the responses to acetic acid and rapidly adapting mechanosensitive units gave rise to only a slight inhibition. To examine the differential effects of these sensory units in antidromic inhibition, antidromic impulses were evoked by chemical stimulation of the adjacent papilla neuronally connected with the dually innervated papilla under study. Antidromic volleys of impulses elicited by NaCl or quinine stimulation produced a large inhibition of the afferent activity in the other branch, as induced by NaCl stimulation of the dually innervated papilla. Plausible mechanisms of synaptic interaction in peripheral gustatory systems are considered.  相似文献   

14.
1. Repeating bursts of motor neurone impulses have been recorded from the nerves of completely isolated nerve cords of the medicinal leech. The salient features of this burst rhythm are similar to those obtained in the semi-intact preparation during swimming. Hence the basic swimming rhythm is generated by a central oscillator. 2. Quantitative comparisons between the impulse patterns obtained from the isolated nerve cord and those obtained from a semi-intact preparation show that the variation in both dorsal to ventral motor neurone phasing and burst duration with swim cycle period differ in these two preparations. 3. The increase of intersegmental delay with period, which is a prominent feature of swimming behaviour of the intact animal, is not seen in either the semi-intact or isolated cord preparations. 4. In the semi-intact preparation, stretching the body wall or depolarizing an inhibitory motor neurone changes the burst duration of excitatory motor neurones in the same segment. In the isolated nerve cord, these manipulations also change the period of the swim cycle in the entire cord. 5. These comparisons suggest that sensory input stabilizes the centrally generated swimming rhythm, determines the phasing of the bursts of impulses from dorsal and ventral motor neurones, and matches the intersegmental delay to the cycle period so as to maintain a constant body shape at all rates of swimming.  相似文献   

15.
The delayed and asynchronous firing of chromatolytic motoneurons in response to group I afferent volleys is shown to be evoked monosynaptically, there being an abnormally long and variable delay between onset of monosynaptic action and generation of impulse discharge. Intensity of monosynaptic excitatory action is reduced, and considerable variability in the form of successively evoked postsynaptic potentials is often observed. No evidence has been found for the development of excitatory group I polysynaptic pathways. Reduction in responsiveness of finer dendrites is indicated by the feeble "d" response evoked by an antidromic volley in a chromatolytic motor nucleus. Antidromic impulses appear to invade the cell bodies and coarse dendrites, but die out at points short of the normal extent of dendritic invasion. Vigorous firing of Renshaw cells can be elicited by antidromic volleys. Chromatolytic motoneurons appear to maintain reasonably normal resting membrane potentials, but are more susceptible to damage than are normal cells. Action potentials are large and usually overshoot the resting potential level. Post spike potentials are similar to those of normal cells except for a less prominent, or absent, early phase of depolarisation. In contrast with the reduced responsiveness of peripheral dendrites, there is a lowered threshold for antidromic and segmental reflex synaptic activation of the more central regions, probably the cell bodies and nearby coarse dendrites, of motoneurons undergoing chromatolysis.  相似文献   

16.
Neural Photoreception in a Lamellibranch Mollusc   总被引:1,自引:5,他引:1       下载免费PDF全文
The pallial nerves of Spisula solidissima each contain a single afferent nerve fiber which responds directly to illumination of the nerve, and apparently mediates the "shadow" response of siphon retraction. These units show constant-frequency spontaneous activity in the dark; illumination abruptly inhibits this discharge, and cessation of the light stimulus then evokes a prolonged burst of impulses at high frequency (the off-response). Impulses are initiated at a point near the visceral ganglion, and propagated unidirectionally toward it. Stimulation with monochromatic light has revealed that more than one photoreceptor pigment is involved, since the discharge patterns evoked are wavelength-specific. Inhibition is relatively prominent at short wavelengths, excitation at long wavelengths. Following selective adaptation with blue light, "on" responses can be produced with red stimuli, demonstrating the unmasking of an excitatory event which takes place during illumination. The two photoreceptor pigments may be segregated in two or more cells presynaptic to the recorded unit, or,—more likely—may both be contained in the same cell. The spectral sensitivity function for inhibition shows a single maximum at 540 mµ, and is probably dependent upon a carotenoid pigment. No photoreceptor function has been demonstrated for a hemoprotein, apparently identical with cytochrome h, which occurs in high concentration in Spisula nerve.  相似文献   

17.
The effects of stimulation of the dorsal funiculus on dorsal surface potentials (DSPs) of the spinal cord evoked by stimulation of a peripheral nerve and on antidromic action potentials (AAPs) evoked by stimulation of terminal branches of primary afferent fibers and recorded from the afferent nerve or dorsal root, were investigated in acute experiments on spinal cats and on cats anesthetized with pentobarbital and chloralose. Stimulation of the dorsal funiculus led to biphasic inhibition of the N1-component of the DSP with maxima at the 15th–30th and 60th–80th milliseconds between the conditioning and testing stimuli. Maximal reinforcement of the AAP was found with these intervals. Bilateral division of the dorsal funiculi between the point of application of the conditioning stimuli and the point of recording the DSP abolished the first wave of inhibition of the DSP and the reinforcement of the AAP. After total transection of the cord above the site of conditioning stimulation the picture was unchanged. It is concluded that the initial changes in DSP and AAP are due to activation of the presynaptic inhibition mechanism by antidromic impulses traveling along nerve fibers running in the dorsal funiculus. Repeated inhibition of the DSP, like reinforcement of the AAP, can possibly be attributed to activation of similar inhibitory mechanisms through the propriospinal neurons of the spinal cord.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 401–405, July–August, 1973.  相似文献   

18.
We examined the well-known spontaneous discharge (SD) and light-evoked (PD) discharge of the crayfish caudal photoreceptor for the possible existence of a daily rhythm in spike frequency. To do this, we isolated the abdominal nerve cord in vitro and studied its discharge frequency in constant darkness. Single cosinor analysis revealed significant SD and PD circadian rhythms (P < .05) with periods tau = 24.4h and 24.2h, respectively. These oscillations correspond to an endogenous circadian discharge of the caudal photoreceptor that is enhanced by light. The importance of this rhythm in the adaptive behavior of crayfish is discussed.  相似文献   

19.
Potentials of motoneurons of the lower segments of the spinal cord were recorded with the aid of intracellular microelectrodes in experiments on cats with induced tetanus produced by injection of tetanus toxin (1500–2000 mouse LD50) into the extensor muscles of the left shin. Neither afferent volleys of impulses in cutaneous and muscle nerves, nor antidromic volleys in the corresponding ventral roots, produced IPSPs in motoneurons of the extremity into which toxin was injected. The form both of antidromic peak potentials and of monosynaptic EPSPs in motoneurons in which IPSPs were blocked by tetanus toxin did not differ from the form of corresponding potentials of motoneurons in normal cats. The values of threshold depolarization for peak discharges during synaptic and direct stimulation were equal in tetanus and control motoneurons. Resistance and time constant values of the membrane in "tetanus" motoneurons did not differ from the corresponding values for "control" motoneurons.N. I. Pirogov Second Medical Institute, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 25–34, July–August, 1969.  相似文献   

20.
Responses recorded from visual cells of Limulus (presumably eccentric cells) following abrupt and maintained illumination consist of depolarization with superimposed spikes. Both the depolarization and the frequency of firing are greater at the beginning of the response than later on. Frequency of firing decreases with time also during stimulation with constant currents, but the decay is then less than it is during constant illumination. Early and steady-state responses do not increase in the same proportion following illumination at different intensities. Membrane conductance is higher during the early peak of the response than in steady state. Early and late potential changes appear to tend to the same equilibrium value. The results support the assumptions that: (a) discharge of impulses is the consequence of depolarization of a specialized "pacemaker region" in the axon; (b) depolarization induced by light is the consequence of increase of membrane conductance. The major conductance changes occurring during constant illumination may be due to corresponding changes of the "stimulus" supplied by the photoreceptor or to changes of sensitivity of the eccentric cell's membrane to this stimulus. Some accessory phenomena may be the consequence of regenerative properties of the nerve cell itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号