首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bison bison (bison), Cervus canadensis (elk), Alces alces (moose), and Bos taurus (cattle) musculature containing Sarcocystis spp. cysts was fed to laboratory raised Canis latrans (coyotes), Sporocysts collected from the feces of coyotes fed musculature of each of the ruminant species were fed to four groups of three laboratory-raised domestic calves, respectively, to determine if Sarcocystis spp. was transmissible from wild to domestic ruminants and if so, to compare clinical signs of infection and morphologic features of cysts with those resulting from infection with Sarcocystis bovicanis. All calves fed sporocysts of Sarcocystis from coyotes that ate bison or cattle muscle had similar clinical signs and harbored morphologically similar parasites, suggesting that both bison and cattle are intermediate hosts for S. bovicanis and that this species is transmissible between the two ruminant species. All calves fed sporocysts from coyotes that ate elk muscle or moose muscle remained asymptomatic but one calf in each group had intramuscular cysts. The finding of relatively large numbers of intramuscular cysts in one calf fed sporocysts of elk origin and smaller numbers in one calf fed sporocysts of moose origin could represent either spurious natural infections or indicate low infectivity of Sarcocystis spp. from elk and moose to cattle.  相似文献   

2.
We examined chase distances of gray wolves Canis lupus Linnaeus, 1758 hunting moose Alces alces and roe deer Capreolus capreolus, and recorded details of encounters between wolves and prey on the Scandinavian Peninsula, 1997–2003. In total, 252 wolf attacks on moose and 64 attacks on roe deer were registered during 4200 km of snow tracking in 28 wolf territories. Average chase distances were 76 m for moose and 237 m for roe deer, a difference likely due to variation in body size and vigilance between prey species. A model including prey species, outcome of the attack, and snow depth explained 15–19% of the variation found in chase distances, with shorter chase distances associated with greater snow depth and with successful attacks on moose but not on roe deer. Wolf hunting success did not differ between prey species (moose 43%, roe deer 47%) but in 11% of the wolf attacks on moose at least one moose was injured but not killed, whereas no injured roe deer survived. Compared with most North American wolf studies chase distances were shorter, hunting success was greater, and fewer moose made a stand when attacked by wolves in our study. Differences in wolf encounters with moose and roe deer likely result from different anti-predator behaviour and predator-prey history between prey species.  相似文献   

3.
Despite moose (Alces americanus) likely being both an ecological and cultural keystone species in the North American boreal forest, few studies have examined niche overlap between moose and other ungulates. In response to concerns from local people about the potential for competition for habitat between moose and reintroduced bison (Bison bison), and the potential for disturbance to moose by bison and bison hunters, we investigated overlap in winter habitat selection by these species in southwestern Yukon, Canada. We used available geo-referenced data of animal locations, and associated environmental covariates, to develop resource selection probability function (RSPF) models of early-winter and late-winter habitat selection by moose and bison. In early-winter, moose selected sub-alpine shrub-dominated habitats, whereas bison extensively selected wet sedge meadows in lowland valleys. Both species used a greater variety of habitats in late-winter, with moose selecting drainages above tree line or river valleys with deciduous forest cover, while bison selected either south-facing grassy slopes or wet sedge meadows. Given observed differences in seasonal habitat selection between moose and bison, these species are predicted to overlap on only 0.5 and 6.6% of our 12,818-km2 study area during early-winter and late-winter, respectively. The lack of demonstrated winter habitat overlap between moose and reintroduced bison, coupled with low diet overlap, points to an overall low potential for competition for winter habitat between these species, or for disturbance to moose attributable to bison or bison hunters. Resource partitioning that facilitates coexistence on a shared landscape suggests that concern over the impact of reintroduced bison on resident populations of moose is likely unwarranted.  相似文献   

4.
Large herbivores often have key functions in their ecosystems, and may affect ecosystem processes with cascading effects on other animals. The mechanisms often involve relocations of resources of various kinds, including reduction in resource availability following foraging and increase in resources from animal excreta. As large herbivore populations in Europe generally are intensely managed, management activities may interact with the activities of the herbivores themselves in the effect on other ecosystem components. We investigated the effects of moose (Alces alces) winter browsing, together with the effect of net nutrient input via supplementary winter feeding of moose on functional composition and species richness of birds in a boreal forest. Supplementary feeding stations for moose had a net zero effect on bird species richness and abundance, because negative effects of moose browsing were balanced by positive effects of nutrient input. Sites with a similar browsing intensity as at feeding stations but without nutrient input had lower abundance and species richness than feeding stations. Functional groups of bird species showed differing responses: birds nesting at or below browsing height were negatively affected by moose browsing, whereas species nesting above the browsing zone were positively affected by moose browsing. Insect-eating species responded negatively to moose browsing on birch but positively to nutrient input at feeding stations, whereas seed-eating species responded positively to birch browsing and negatively to feeding stations. This study showed that both high levels of cervid activity and human management interventions influence bird communities.  相似文献   

5.
Based on morphological and physiological observations, it has been suggested that differences exist in the degree that reticuloruminal (RR) contents are stratified between various ruminant species. However, the occurrence of stratification has hardly been measured in non-domestic species. Forestomach contents of free-ranging moose (n = 22) and red deer (24) shot during regular hunting procedures, and of captive (but 100% forage fed) addax (6) and bison (10) culled for commercial or management purposes were investigated. There was no difference between the species in the degree by which RR ingesta separated according to size due to buoyancy characteristics in vitro. However, RR fluid of moose was more viscous than that of the other species, and no difference in moisture content was evident between the dorsal and the ventral rumen in moose, in contrast to the other species. Hence, the RR milieu in moose appears less favourable for gas or particle separation due to buoyancy characteristics. These findings are in accord with notable differences in RR papillation between the species. In moose, particle separation is most likely restricted to the reticulum, whereas in the other species, the whole rumen may pre-sort particles in varying degrees; a possible explanation for this pattern is a hypothetically lesser saliva production and fluid throughput in moose. The results suggest that differences in RR physiology may occur across ruminant species. The RR sorting mechanism should be considered a dynamic process that is better measured by its result — the significantly smaller particle size in the distal digestive tract when compared to the RR — than by regional differences in particle size within the RR.  相似文献   

6.
Johan Månsson 《Ecography》2009,32(4):601-612
Understanding temporal variation in habitat selection and browsing intensity by large herbivores is fundamental because of their large impact on the ecosystems. I studied the annual variation in winter browsing pressure on young trees and habitat selection by moose Alces alces over a ten year period. Specifically, the relationships between browsing pressure on Scots pine Pinus sylvestris and two birch species ( Betula ssp.) and three explanatory variables – 1) availability of forage, 2) moose density (estimated by pellet group counts) and 3) snow cover was studied. At a larger spatial scale (forest stand level) the relationship between moose habitat selection between three different habitat types (forest <30 yr, forest>30 yr and mire) and two explanatory variables, 1) snow condition and 2) moose density, were studied. Browsing pressure on Scots pine, the dominating food plant, was related to forage availability, moose density and snow condition. No significant relationships between any of the three explanatory variables and browsing pressure on the two birch species were found. Moose selection for certain habitats varied between years and was affected by number of days with >0.10 m of snow.
Habitat selection was not significantly related to moose density and the relationship between overall moose density and habitat specific moose densities was proportional within the studied density range. These findings have implications for understanding varying browsing patterns – and will affect both the ability to predict herbivores' effect on the forest ecosystem. A snow dependent browsing pattern also indicates that one can expect a long term decrease in browsing pressure on the tree and shrub layer as a consequence of the ongoing large-scale climate change.  相似文献   

7.
Plants growing in diverse communities are believed to exhibit associational resistance to herbivores, but this hypothesis has seldom been tested experimentally for vertebrate herbivores in forest ecosystems. We examined browsing patterns of the two principal mammalian herbivores of Finnish boreal forests, moose and voles, in young stands where tree species diversity and composition were experimentally manipulated. The stands were composed either of monocultures or different 2–5 species mixtures of Norway spruce, Scots pine, Siberian larch, silver birch, and black alder. Voles and moose showed contrasting responses to stand diversity and species composition. In accordance with the predictions of the associational resistance hypothesis, vole damage was higher in tree monocultures than in mixed stands, although stand diversity effects were statistically significant only at one of the three study areas. Voles also damaged more trees in coniferous than in deciduous stands. In contrast, moose browsing tended to increase with the number of tree species in a stand and with the presence of the preferred tree species, birch, in a mixture. The observed differences in vole and moose responses to stand diversity and species composition are likely to be due to different feeding specialisation, foraging patterns, and movement ability of these herbivores. Voles switched to trees only when the supply of a more preferred food (grasses and forbs) was depleted and restricted their feeding choice only to the most palatable tree species regardless of the number of tree species present per stand. In contrast, tree branches and foliage represented an important part of moose diet throughout the year; moose may be able to tolerate secondary plant metabolites of different tree species better than voles and may thus benefit from diet broadening when more tree species are available. Furthermore, the home range size and foraging ability of these two very differently sized herbivores may partly explain the observed differences in utilisation of different tree species. Finally, both moose and voles showed high spatial and temporal variation in their feeding; in particular, vole damage was more influenced by tree species diversity in areas and years with high vole densities. Thus, diversification of forest stands may have very different effects on mammalian browsing depending on the herbivores present, their densities, and the tree species used in reforestation.  相似文献   

8.
Pathologic lesions were summarized in 18 free-ranging cervids (15 moose [Alces alces], two roe deer [Capreolus capreolus], and one red deer [Cervus elaphus]) diagnosed with malignant catarrhal fever (MCF) after examination at the National Veterinary Institute, Oslo 1982-2005. Eye lesions (conjunctivitis, corneal opacity, fibrin clots in the anterior eye chamber) were the most frequent gross finding. Erosive-ulcerative mucosal lesions in the nose and mouth were also commonly found. Histopathology revealed a nonpurulent vasculitis and perivasculitis in the central nervous system (CNS) typical of MCF in 16 of the cases. The diagnosis in the remaining two animals was based upon histologic eye lesions consistent with MCF (CNS not available for examination). Polymerase chain reaction was run on samples from 15 individuals for evidence of MCF-virus DNA, and ovine herpesvirus-2 (OvHV-2) DNA was detected in five moose, one roe deer, and one red deer, and caprine herpesvirus-2 (CpHV-2) DNA was detected in two moose and one roe deer. Sera from 1,000 free-ranging cervids were tested for specific antibodies to MCF-associated viruses (MCFV) by competitive inhibition enzyme-linked immunosorbent assay. The seroprevalences were: red deer 5%, reindeer (Rangifer tarandus) 4%, roe deer 2%, and moose 0.4% (n = 250 for all four species). The results indicate that sheep and goat MCFV may cause serious disease in wild moose, roe deer, and red deer. The seropositive cervids most likely represent individuals infected with either OvHV-2 or CpHV-2, but may also reflect infections with other related MCFV.  相似文献   

9.
Total numbers, generic distribution and percentage species distribution were determined for the ciliate protozoa in rumen contents obtained from Alaskan moose (Alces americana), musk-ox (Ovibos moschatus) and Dall mountain sheep (Ovis dalli). The musk-ox has a fauna somewhat similar to that previously observed in reindeer and caribou. In contrast, only protozoa in the genus Entodinium were observed in moose, while Dall mountain sheep have a fauna unique among Alaskan ruminants studied to date. Other than Entodinium exiguum which was common to all animals, only 2 additional species of Entodinium, observed in the moose and musk-ox, occurred in more than one animal species. Four new species of protozoa are described, Entodinium dalli sp.n., Entodinium constrictum sp.n. and Polyplastron alaskum sp.n. from the Dall mountain sheep and Entodinium alces sp.n. from moose.  相似文献   

10.
Baseline reference ranges of serum chemistry and hematology data can be important indicators for the status of both individuals or populations of wild animals that are affected by emerging pathogens, toxicants, or other causes of disease. Frequently, reference ranges for these values are not available for wildlife species or subspecies. We present hematologic and serum chemistry reference ranges for moose (Alces alces) adults, yearlings, and calves in Norway sampled from 1992-2000. Additionally, we demonstrated that both induction time and chase time were correlated with initial rectal temperature, although they were not significantly correlated with cortisol, aspartate aminotransferase, glucose, or creatine kinase. Overall, the reference ranges given here are similar to those given for American moose, with a few differences that can be attributed to environment, testing methodology, or subspecies or species status. This is the first report, to our knowledge, of reference ranges for moose in Norway.  相似文献   

11.
Ungulates are leading drivers of plant communities worldwide, with impacts linked to animal density, disturbance and vegetation structure, and site productivity. Many ecosystems have more than one ungulate species; however, few studies have specifically examined the combined effects of two or more species on plant communities. We examined the extent to which two ungulate browsers (moose [Alces americanus]) and white‐tailed deer [Odocoileus virginianus]) have additive (compounding) or compensatory (opposing) effects on herbaceous layer composition and diversity, 5–6 years after timber harvest in Massachusetts, USA. We established three combinations of ungulates using two types of fenced exclosures – none (full exclosure), deer (partial exclosure), and deer + moose (control) in six replicated blocks. Species composition diverged among browser treatments, and changes were generally additive. Plant assemblages characteristic of closed canopy forests were less abundant and assemblages characteristic of open/disturbed habitats were more abundant in deer + moose plots compared with ungulate excluded areas. Browsing by deer + moose resulted in greater herbaceous species richness at the plot scale (169 m2) and greater woody species richness at the subplot scale (1 m2) than ungulate exclusion and deer alone. Browsing by deer + moose resulted in strong changes to the composition, structure, and diversity of forest herbaceous layers, relative to areas free of ungulates and areas browed by white‐tailed deer alone. Our results provide evidence that moderate browsing in forest openings can promote both herbaceous and woody plant diversity. These results are consistent with the classic grazing‐species richness curve, but have rarely been documented in forests.  相似文献   

12.
Differences in the ability of salivary proteins from Scandinavian and North American moose (Alces alces) to bind tannins from various preferred food plant sources were studied. Both Scandinavian and North American moose produce a salivary tannin-binding protein which binds only condensed tannins common in their diet. The tannins of winter-browsed stems of Pinus sylvestris and Salix pentandra were more effectively bound by salivary tannin-binding protein from North American moose than by those from Scandinavian moose. Tannins of P. sylvestris and S. pentandra stems were also more effective binding agents than tannins from S. caprea and Betula species. The interactions between salivary tannin-binding protein and plant tannins may be one factor affecting food plant choice of moose. The chemical and biochemical characteristics of plant tannins and the ability of salivary tannin-binding proteins to react with tannins should be taken into account in diet selection.  相似文献   

13.
Large herbivores can affect vegetation structure and species composition as well as material and energy flows in the ecosystem through their selective feeding, defecation, urination and trampling. These changes have a large potential to indirectly affect other trophic levels, but the mechanisms are poorly known. We studied the impacts of moose Alces alces browsing along a gradient of site productivity by experimentally simulating four different moose densities. Here we show that moose can affect the richness and abundance of three trophic levels in Swedish boreal forests through complex direct and indirect impacts, but in qualitatively different ways depending on how the physical habitat or food resources of a trophic level are affected. Vegetation richness had a hump‐shaped (unimodal) response to increased moose density. Leaf litter production decreased when browsing increased, which in turn depressed the abundance of flying prey for spiders. Consequently, spider abundance and richness declined monotonically. The responses of spider richness to moose density were further conditioned by site productivity: the response was positive at productive and negative at unproductive sites. In contrast, herbivorous Hemiptera were not affected by moose, most likely because the abundance of their food plants was not affected. The highest simulated moose density had an impact on all variables responding to moose even after a few years of treatment and can be considered as overabundance. We also show that the impacts of low or moderate moose density can be positive to some of the organisms negatively affected by high density. The level of herbivore population density that leads to substantial community impacts also depends on site factors, such as productivity.  相似文献   

14.
The two tree-like birch species Betula pendula and B. pubescens are of medium preference to moose during winter in northern Sweden. Because these birches are abundant in many biotopes, they form a major part of the moose diet. The two birches are very similar in appearance and often occur in mixed stands. Twenty-one birch stands where B. pendula formed from 2 to 97% of the birches were investigated to determine how the relative composition of the stands affected browsing of the two species by moose. In stands composed of 60% or less of B. pendula , there was a preference for this species when regarding 1.5–3.0 m high birches, which carry the largest amount of available browse per tree. At higher proportions B. pendula was still preferred, but use was closer to availability. However, in all stands there were significantly more moose bites per tree of B. pendula than of B. pubescens . In four birch stands browsing on 1.0–1.5 m high birches was also investigated. For this height class there was still a preference for B. pendula , but the difference between the two species was less pronounced than for the 1.5–3.0 m height class.  相似文献   

15.
Scandinavian moose (Alces alces) eat Scots pine (Pinus sylvestris) in winter. Although North American moose are known to eat conifers such as true firs (Abies spp.) in winter, substantial consumption of pine by moose in North America has not been documented. Here, we document short-term winter preferences of human-habituated northwestern moose (Alces alces andersoni) for branches of mature North American and European conifer species as determined by a cafeteria-style feeding trial. Moose selected for species such as Douglas fir (Pseudotsuga menziesii; from which they took the smallest bite diameters) while avoiding species such as lodgepole pine (Pinus contorta; from which they took the largest bites) and hybrid white spruce (Picea glauca × engelmanii). The amount of species-specific biomass consumed by moose was negatively correlated with bite diameters taken from branches of those species and did not appear to be significantly influenced by differences in twig morphology between species. Our trial suggests that northwestern moose readily consume conifers in winter and, from the species we tested, prefer Douglas fir. While no clear preference existed between Scots pine and lodgepole pine, moose avoided lodgepole pine, but not Scots pine, relative to Douglas fir. Our trial suggests that northwestern moose are more likely to feed on the branches of Douglas fir than pine, which may be of interest to foresters managing conifers within the North American range of moose, particularly where Scots pine are being considered for planting.  相似文献   

16.
We observed forage and habitat selection in radio-collared moose at feeding sites in southeast Norway. Use of older forest increased from spring to autumn. Birch Betula spp. and bilberry Vaccinium myrtillus accounted for c. 75% of the diet. Occurrence of important forage plants, height of browse, and difference in phenology between plant species all appeared to play a role in moose selection of feeding sites. Shading influences moose forage by delaying plant phenology and possibly through its effect on leaf content of water and secondary compounds. On single birch trees, feeding was concentrated to the top branches at midsummer; during spring and autumn more leaves from side branches were eaten. Greater discrimination as vegetation matured was also evident from the wider variety of forage species used at midsummer. Selection of feeding sites was not related to density of important browse species. We propose that variations in light/shade conditions may play a role in moose choice of feeding sites and that moose on summer range will benefit from a heterogeneous mixture of plantations and older forest stands.  相似文献   

17.
Across much of North America, populations of moose (Alces alces) are declining because of disease, predation, climate change, and anthropogenic-driven habitat loss. Contrary to this trend, populations of moose in Colorado, USA, have continued to grow. Studying successful (i.e., persistent or growing) populations of moose can facilitate continued conservation by identifying habitat features critical to persistence of moose. We hypothesized that moose using habitat with higher quality willow (Salix spp.) would have a higher probability of having a calf-at-heel (i.e., calving success). We evaluated moose calving success using repeated ground observations of collared individuals with calves in an occupancy model framework to account for detection probability. We then evaluated the impact of willow habitat quality and nutrition on moose calving success by studying 2 spatially segregated populations of moose in Colorado. Last, we evaluated correlations between willow characteristics (browse intensity, height, cover, leaf length, and species) and willow nutrition (dry matter digestibility [DMD]) to assess the utility of using those characteristics to assess willow nutrition. We found willow height and cover had a high probability of being positively associated with higher individual-level calving success. Willow DMD, browse intensity, and leaf length were not predictive of individual moose calving success; however, the site with higher mean DMD consistently had higher mean estimates of calving success for the same year. Our results suggest surveying DMD is likely not a useful metric for assessing differences in calving success of individual moose but may be of use at population levels. Further, the assessment of willow morphology and density may be used to identify areas that support higher levels of moose calving success.  相似文献   

18.
The capercaillie has been negatively affected by the loss of mature forests. However, forestry creates young plantations offering a superabundant food supply for moose. Using two spatial scales, we tested whether the landscape-level environmental requirements of the capercaillie and moose differ. We compared the spatial association between the abundances of the two species in 50-?×?50-km grids and, using a set of regression models, analyzed how it was affected by various land use variables in five regions of Finland. Both species were generally most abundant in the same grid cells. Moreover, the association between abundance and several landscape variables was very similar for both species. Forest cover had a positive impact on both species in Eastern and South-Western Finland. Only in Western Finland was the capercaillie more positively associated with older forest than the moose. Human impact variables were negatively related to both capercaillie and moose abundance in Eastern and South-Western Finland, the effect being stronger for capercaillie. In Northern Finland, human impact turned positive. Our results highlight that, on broad landscape and regional scales, we might not need to make trade-offs in management decisions concerning capercaillie and moose. While considering regional land use planning, the primary goal for both species seems to be to secure large areas of forest, preferably at a distance from human settlement.  相似文献   

19.
The adaptation of different species to warming temperatures has been increasingly studied. Moose (Alces alces) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies, the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose, we used airborne laser scanning (ALS) data extracted from the locations of GPS‐collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 °C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate.  相似文献   

20.
Activity patterns in moose and roe deer in a north boreal forest   总被引:5,自引:0,他引:5  
The activity patterns of a coarse browser, the moose. Alces alces , and a selective browser, the roe deer, Capreolus capreolus . in a north boreal forest, central Sweden, were compared with respect to time allocated for foraging and processing (ruminating) in different seasons. Data were quantified by measuring 24 h activity patterns which included both the duration and frequency of active and inactive periods. Activity patterns were measured from 9 female moose and 9 roe deer that were radiomarked during April 1974–May 1978 (roe deer) and February 1982–December 1984 (moose). In total, data were available from 4345 h for roe deer and 14745 h for moose. Roe deer differed from moose in having active bouts more evenly distributed over the day. Generally, both species were most active during sunrise and sunset. Total daily active time varied with season, reaching the highest value in late May – early June among roe deer (56.7% of the day) and a month later among moose (51.9%). Both species were least active in February (30–40%). Average length of active bouts did not differ significantly between the species but changed with season (roe deer 48.6–99.2 min, moose 61.6–88.7 min). Average length of inactive bouts varied significantly with season, with moose having consistently longer bouts (89.3–156.3 min) than roe deer (55.8–107.0 min). The number of activity bouts per day were also higher among roe deer. During midsummer, they changed activity nearly twice as many times as moose (26 times d−1 vs 16 times d−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号