首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
O-连接的β-N-乙酰葡糖胺(O-GlcNAc)修饰是一种广泛存在于细胞浆和细胞核蛋白质丝/苏氨酸上的动态、可逆的翻译后修饰. 这种修饰与经典的糖基化不同而类似于磷酸化修饰,它在生命过程中发挥重要的调节作用. O-GlcNAc修饰作为潜在的营养感受器,可以调节转录、代谢等众多细胞进程,并与癌症等人类重大疾病密切相关. 本文主要综述了O-GlcNAc修饰与肿瘤形成和转移的关系,并对O-GlcNAc促进肿瘤形成与转移的潜在分子机制进行了探讨.  相似文献   

2.
蛋白质的O-GlcNAc糖基化现象发现迄今已有30多年历史.动物中,O-GlcNAc糖基化在调控细胞信号转导、基因转录、表观遗传和新陈代谢等方面发挥重要作用.而植物中,O-GlcNAc糖基化在近几年才得到关注并进行初步研究.本文对植物中O-GlcNAc修饰的糖供体合成途径、O-GlcNAc修饰关键酶、O-GlcNAc修饰蛋白的检测及功能等方面的研究工作进行归纳总结,发现O-GlcNAc糖基化在植物的生长发育、激素网络调控、信号转导、植物病毒侵染等过程均发挥重要作用,为进一步研究植物中O-GlcNAc糖基化的生物学功能提供参考.  相似文献   

3.
O-连接乙酰葡糖胺(O-GlcNAc)糖基化转移酶Ogt催化的O-GlcNAc糖基化修饰是一种重要的翻译后修饰形式. O-GlcNAc糖基化修饰通过调控蛋白质的功能而参与了多种生物学过程,并与多种疾病密切相关. O-GlcNAc修饰广泛存在于神经系统中,并在发育和衰老过程中表现出动态变化.既往研究表明, O-GlcNAc修饰对胚胎和成体神经发生,神经元的成熟、存活、突触发育和小鼠的认知能力等都发挥重要的调控作用.在多种神经发育和退行性疾病中,许多关键蛋白的O-GlcNAc修饰水平表现出显著改变.本文综述了O-GlcNAc糖基化修饰在神经发育和神经系统疾病中作用和分子机制的研究进展.  相似文献   

4.
O-连接的N-乙酰葡糖胺(O-GlcNAc)修饰是普遍存在的翻译后修饰.已有许多的蛋白被发现是O-GlcNAc蛋白.目前,许多分析方法可以检测O-GlcNAc,将其从内膜系统的多种糖基化中区分出来.O-GlcNAc修饰在细胞事件中发挥着重要的功能,O-GlcNAc的调控异常可能会引起某些人类疾病,如癌症、阿尔茨海默病和II型糖尿病.杆状病毒GP41蛋白也是糖蛋白,它介导芽殖型病毒粒子(budded virus,BV)的核衣壳通过胞核.O-GlcNAc的调控研究为探讨GP41蛋白O-GlcNAc的调控作用提供了参考模式.  相似文献   

5.
蛋白质O-GlcNAc糖基化修饰对tau蛋白磷酸化修饰的影响   总被引:5,自引:1,他引:5  
蛋白质的O位N-乙酰葡萄糖胺(O-GlcNAc)糖基化修饰是一种新近发现的广泛存在于细胞核蛋白与细胞浆蛋白的蛋白质翻译后修饰.其性质与经典的膜蛋白和分泌蛋白的糖基化修饰不同,而与蛋白质磷酸化修饰更相似.O-GlcNAc糖基化和磷酸化均修饰tau蛋白的丝氨酸和苏氨酸残基,通过改变O-GlcNAc糖基化供体底物浓度以及其关键酶活性等方法,改变分化后成神经细胞样的PC12细胞中的蛋白质O-GlcNAc糖基化修饰水平,然后用特异性识别不同位点磷酸化的tau蛋白抗体,进行蛋白质印迹分析来检测tau蛋白磷酸化水平的变化.结果发现细胞内蛋白质O-GlcNAc糖基化对tau蛋白磷酸化的影响,在不同的磷酸化位点其影响不同.增加蛋白质O-GlcNAc糖基化修饰导致tau蛋白大多数磷酸位点的磷酸化水平降低,反之亦然.这些结果说明,tau磷酸化在大多数位点受到O-GlcNAc糖基化修饰的负性调节.这一研究为阐明调节tau蛋白磷酸化水平的机理和阿尔茨海默病脑中tau异常过度磷酸化的分子机制提供了新的线索.  相似文献   

6.
蛋白质的O-GlcNAc糖基化现象发现迄今已有30多年历史.动物中,O-GlcNAc糖基化在调控细胞信号转导、基因转录、表观遗传和新陈代谢等方面发挥重要作用.而植物中,O-GlcNAc糖基化在近几年才得到关注并进行初步研究.本文对植物中O-GlcNAc修饰的糖供体合成途径、O-GlcNAc修饰关键酶、O-GlcNAc修饰蛋白的检测及功能等方面的研究工作进行归纳总结,发现O-GlcNAc糖基化在植物的生长发育、激素网络调控、信号转导、植物病毒侵染等过程均发挥重要作用,为进一步研究植物中O-GlcNAc糖基化的生物学功能提供参考.  相似文献   

7.
β-葡糖醛酸酶(GUS)报告系统是现代分子生物学研究领域中被广泛使用的一种重要工具,在解析基因时空表达调控的研究中发挥着重要作用.本文概述了报告基因GUS的生化特性及检测手段,从启动子元件鉴定、基因诱捕、无标记转基因技术等方面论述GUS的应用现状和优势,并针对内源GUS、GUS抑制因子等问题和改进优化手段进行了分析,为该技术在植物功能基因研究中进一步拓展提供新线索和思路.  相似文献   

8.
O-GlcNAc修饰蛋白质的生理功能和研究方法   总被引:1,自引:0,他引:1  
氧连N-乙酰葡糖胺(O-GlcNAc)修饰是与磷酸化相类似的蛋白质翻译后修饰方式,它主要发生在细胞核和细胞质中的蛋白质上.与细胞信号通路密切相关,成为近年来的研究热点。该文主要从O-GlcNAc修饰蛋白质的生理功能和研究方法两方面介绍该领域近年来的研究成果。  相似文献   

9.
O-乙酰氨基葡萄糖(O-GlcNAc)修饰及其生物学功能研究进展   总被引:1,自引:0,他引:1  
O-GlcNAc修饰系发生在蛋白质丝氨酸、苏氨酸羟基末端连接的乙酰氨基葡萄糖上的单糖基修饰。自1984年以来,针对O-GlcNAc糖基化修饰的研究日益升温。O-GlcNAc修饰是动态变化、可调控的,满足蛋白质翻译后修饰参与信号通路的必要条件。在多数情况下,O-GlcNAc修饰与磷酸化修饰发生在蛋白质的相同氨基酸残基上,故两种修饰之间常存在竞争性抑制,亦被称之为"阴阳"制衡。O-GlcNAc修饰参与细胞内多种信号通路的调控,调节着生长、增殖、激素响应等过程,在糖尿病、神经退行性疾病和肿瘤等代谢性疾病中扮演重要角色。探究O-GlcNAc修饰及其在生理、病理状态中的作用具有极为重要的意义。  相似文献   

10.
生物大分子包括蛋白质、核酸、糖脂等的动态化学修饰与病理变化的关系,是当今生物医学研究最为重要的前沿领域之一。细胞内蛋白质丝氨酸和苏氨酸侧链羟基的O连N-乙酰葡糖胺(O-GlcNAc)糖基化修饰,参与了基因表达、信号转导、细胞周期等关键生物学过程的精密调控。异常的O-GlcNAc糖基化与肿瘤、糖尿病、神经退行性疾病等慢性疾病的发生发展密切相关。随着质谱检测技术和蛋白质组学的快速发展,目前已经有大量O-GlcNAc糖基化修饰靶蛋白质和位点得到鉴定。而其中多数蛋白质O-GlcNAc糖基化修饰的生理功能亟需通过探针进一步研究。本文对基于抗体、凝集素、代谢途径、化学酶法的O-GlcNAc糖基化探针研究进行归纳总结,发现未来对O-GlcNAc糖基化的研究急需开发针对特定位点的动态化研究探针,其对进一步揭示O-GlcNAc在疾病发生发展过程中的作用至关重要,也是实现临床分子诊断并进行靶向干预的关键。  相似文献   

11.
Golks A  Guerini D 《EMBO reports》2008,9(8):748-753
The intracellular modification of proteins by the addition of a single O-linked N-acetylglucosamine (O-GlcNAc) molecule is a ubiquitous post-translational modification in eukaryotic cells. It is catalysed by O-linked N-acetylglucosaminyltransferase, which attaches O-GlcNAc to serine/threonine residues, and it is counter-regulated by β-N-acetylglucosaminidase, which is the antagonistic glycosidase that removes the O-GlcNAc group. O-GlcNAc modification competes with phosphorylation by protein kinases at similar sites, thereby affecting important signalling nodes. Accumulating evidence supports a central role for O-GlcNAc modifications and the corresponding enzymes in the regulation of immune cells, particularly in the activation processes of T and B lymphocytes. Here, we discuss recent advances in the field of O-GlcNAc modifications, focusing on the cells of the immune system.  相似文献   

12.
O-GlcNAc是一种广泛存在于蛋白质丝/苏氨酸残基上的动态、可逆的蛋白翻译后修饰,它广泛分布在细胞浆和细胞核中,参与调节多种细胞途径。研究表明蛋白的O-GlcNAc糖基化与神经退行性疾病、糖尿病和癌症等疾病相关。在体内,O-GlcNAc动态修饰由N-乙酰氨基葡萄糖转移酶(OGT)和N-乙酰氨基葡萄糖苷酶(OGA)协同完成。近年来,OGT逐渐成为糖生物学领域的研究热点,在其结构、作用机制及晶体学方面取得了快速发展。  相似文献   

13.
14.
Abstract

O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.  相似文献   

15.
16.
17.
The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.  相似文献   

18.
O-GlcNAcylation is an inducible, highly dynamic and reversible posttranslational modification, which regulates numerous cellular processes such as gene expression, translation, immune reactions, protein degradation, protein–protein interaction, apoptosis, and signal transduction. In contrast to N-linked glycosylation, O-GlcNAcylation does not display a strict amino acid consensus sequence, although serine or threonine residues flanked by proline and valine are preferred sites of O-GlcNAcylation. Based on this information, computational prediction tools of O-GlcNAc sites have been developed. Here, we retrospectively assessed the performance of two available O-GlcNAc prediction programs YinOYang 1.2 server and OGlcNAcScan by comparing their predictions for recently discovered experimentally validated O-GlcNAc sites. Both prediction programs efficiently identified O-GlcNAc sites situated in an environment resembling the consensus sequence P-P-V-[ST]-T-A. However, both prediction programs revealed numerous false negative O-GlcNAc predictions when the site of modification was located in an amino acid sequence differing from the known consensus sequence. By searching for a common sequence motif, we found that O-GlcNAcylation of nucleocytoplasmic proteins preferably occurs at serine and threonine residues flanked downstream by proline and valine and upstream by one to two alanines followed by a stretch of serine and threonine residues. However, O-GlcNAcylation of proteins located in the mitochondria or in the secretory lumen occurs at different sites and does not follow a distinct consensus sequence. Thus, our study indicates the limitations of the presently available computational prediction methods for O-GlcNAc sites and suggests that experimental validation is mandatory. Continuously update and further development of available databases will be the key to improve the performance of O-GlcNAc site prediction.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号