首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybeans (Glycine max [L.] Merr. cv. NC 69-2774) were used to study the nonstructural carbohydrate and nitrogen content of plant tissues, and nitrogenase activity throughout the development of male-sterile and male-fertile plants. Male-sterile plants set approximately 85% fewer pods plus seed than the male-fertile siblings and retained green leaves until a killing frost at 145 days after emergence. Reduced pod set caused increased carbohydrate accumulation in the leaf and root systems of male-sterile plants. Total carbohydrate in roots of male-sterile plants increased from 1.7 to 7.6 times that in the male-fertile roots. A high proportion (60 to 70%) of the male-sterile root carbohydrate was starch. Apparently, root starch was not metabolized by the male-sterile plants. Late in plant development per cent nitrogen was higher in the male-sterile soybean tissues. However, no difference was found in the ability of the nodulated root systems from either genotype to fix nitrogen.  相似文献   

2.
Soybean (Glycine max [L.] Merr.) germplasm, isogenic except for loci controlling male-sterility (ms1) and nodulation (rj1) was utilized to investigate the effects of reproductive tissue development and nitrogen source on the initiation of monocarpic senescence. The experimental genotypes (Ms1Rj1, Ms1rj1, ms1Rj1, and ms1rj1, were selected from a cross between N69-2774 and N59-5259, and were inbred to the F5 generation. Green-house-grown plants were collected during the period of flowering (77 days after transplanting) until maturity (147 days after transplanting). Leaf tissues from the respective genotypes were analyzed at the various harvest dates for RNA, phenolic, and chlorophyll concentrations; acid protease activity; polypeptide banding patterns of chloroplast thylakoids; and chloroplastic ultrastructure.

Regardless of nitrogen source, total chlorophyll concentrations declined between 77 and 119 days after transplanting, resulting in a 40% loss of chlorophyll per square centimeter in all genotypes. Leaf chlorophyll levels continued to decline at a constant rate in male-fertile genotypes, but remained at a constant level (26 micrograms chlorophyll per square centimeter) in male-sterile genotypes, for the remainder of the study. With increased leaf age, a gradual disruption of thylakoid structures was observed, particularly in chloroplasts from the male-fertile genotypes. Chloroplasts from the male-sterile genotypes appeared to lose starch grains but increased their number of chloroplastic lipid bodies with leaf aging. These data suggest that monocarpic senescence in soybeans was initiated at or before flowering. Although reproductive tissue development probably augmented the process, the response attributed to seed formation was not apparent until the mid-pod fill stage (119 days after transplanting). All genotypes had similar changes in other cellular components that are recognized as indicators of plant senescence regardless of whether the plants produced seed.

  相似文献   

3.
Occurrence of genetic instability and formation of stable mutations are basic genetic processes. This study demonstrates that nuclear background may influence the formation of stable dominant nuclear gene of male sterility (MS) on the basis of unstable mutation, which was induced in tissue culture of the sorghum haploid (cv. Milo-145). The mutants with complete or partial MS segregated in variable ratios in the progenies of diploid regenerants were obtained from different experiments on cultivation of haploid tissues. In the Milo-145 genetic background the mutation demonstrated somatic instability and was gradually eliminated by self-pollination of partially sterile plants. Hybridization of the MS-plants with the sorghum line SK-723, a fertility-restorer of the cytoplasmic MS A1 (milo) type, maintained the induced mutation. By repeated backcrossing of MS-plants with SK-723, the male-sterile versions of this line (SK-723- Ms tc ) have been created. In BC-generations, fertile, partially and completely sterile plants were observed. The MS-plants from BC-generations are proposed to contain a dominant gene Ms tc while fertile plants were ms tc / ms tc homozygotes. Crossing the original MS-plants with SK-723 was a key factor in stabilization of the Ms tc gene. Dominant expression of the Ms tc was observed in male-sterile versions of other sorghum lines created by backcrossing to SK-723- Ms tc . The lines fertility-restorers for this mutation have been revealed. In the crosses of restored F1 hybrids with emasculated plants of the non-restoring line, the Ms tc has been transferred through the pollen and manifested in the F1 generation. The possibility of the Ms tc originating as a result of interaction of an unstable allele of the Milo-145 with the SK-723 genome is discussed.  相似文献   

4.
Four soybean (Glycine max L. Merr.) lines isogenic except for loci controlling male sterility (ms1) and nodulation (rj1) were developed to study the effects of reproductive development and nitrogen source on the nucleic acid and protein levels within the leaves. Changes in DNA, RNA, protein, and cellular viability were measured from flowering (77 days after emergence) until maturity (147 days after emergence) in leaves of nodulated and non-nodulated male-sterile and fertile soybean genotypes. Leaf nuclei from the sterile genotypes yielded DNA amounts that were significantly higher than those from the fertile lines. The average DNA values for the nodulated sterile and nodulated fertile lines at 147 days after emergence were 7.01 and 2.45 picograms, respectively. The average 2C DNA amount as determined from dividing root-tip nuclei was 2.83 picograms, which indicated occurrence of endopolyploid mechanisms in the sterile lines and age-related loss of DNA in fertile lines. Similar to DNA findings, the RNA and protein values in the sterile lines were significantly higher than those values observed in the fertile lines, suggesting an increased capacity to synthesize protein. The soybean leaf nuclear DNA declined, especially in the fertile lines in terms of the percent endopolyploid nuclei as well as the average DNA content during maturation. The DNA decline in leaves of fertile genotypes suggests that the leaves may be exporting nucleosides and phosphates to the seeds during embryo formation. In the sterile lines, due to the reduced pod-set, these ready reserves of nucleosides and phosphates tended to accumulate in the chromatin of the leaf nucleus as manifested by the DNA specific Feulgen stain. By the end of the study (147 days after emergence), the nodulated fertile genotypes had experienced a dramatic loss in DNA, RNA, and protein. The nodulated sterile genotypes, however, indicated 65% more DNA, 59% more RNA, and 53% more protein as compared to the nodulated fertile genotypes at 147 days after emergence. The sterile lines also indicated the slowest increase in the death of cells, while the fertile lines indicated the fastest increase in nonviable cells, as shown by trypan blue staining. The fertile lines displayed normal monocarpic senescence throughout the study. The reproductive structures of fertile plants utilized the molecules in seed production, whereas in the sterile lines, these accumulated in leaf cells.  相似文献   

5.
Soybean (Glycine max [L.] Merr.) germplasm, isogenic except for loci controlling male sterility (ms1) and nodulation (rj1), was used to investigate the effects of reproductive tissue development and source of nitrogen nutrition on accumulation, transport, and partitioning of nitrogen in a greenhouse experiment. Nodulated plants were supplied nitrogen-free nutrient solution, and nonnodulated plants were supplied nutrient solution containing 20 millimolar KNO3. Plants were sampled from flowering until maturity (77 to 147 days after transplanting).

Accumulation rates of nitrogen in whole plants during reproductive growth were not significantly different among the four plant types. Nitrogen accumulation in the sterile, nonnodulated plants, however, ceased 2 weeks earlier than in fertile, nonnodulated or fertile and sterile, nodulated plants. This early cessation in nitrogen accumulation resulted in sterile, nonnodulated plants accumulating significantly less whole plant nitrogen by 133 days after transplanting (DAT) than fertile, nonnodulated plants. Thus, changing the site of nitrogen assimilation from nodules (N2-fixing plants) to roots and leaves (NO3-fed plants) resulted in similar whole-plant nitrogen accumulation rates in fertile and sterile plants, despite the absence of seed in the latter.

Leaflet and stem plus petiole tissues of both types of sterile plants had significantly higher nitrogen concentrations after 119 DAT than both types of fertile plants. Significantly higher concentrations and exudation rates of nonureide, reduced-nitrogen in xylem sap of sterile than of fertile plants after 105 DAT were observed. These latter results indicated possible cycling of nonureide, reduced-nitrogen from the downward phloem translocation stream to the upward xylem translocation stream in roots of sterile plants. Collectively, these results suggest a lack of sinks for nitrogen utilization in the shoots of sterile plants. Hence, comparison of nitrogen accumulation rates for sterile and fertile plants does not provide a definitive test of the hypothesis that reproductive tissue development limits photosynthate availability for support of N2 fixation and nitrate assimilation in determinate soybeans.

Nitrogen assimilation during reproductive growth met a larger proportion of the reproductive-tissue nitrogen requirement of nitrate-dependent plants (73%) than of N2-fixing plants (63%). Hence, vegetative-tissue nitrogen mobilization to reproductive tissue was a more prominent process in N2-fixing than in nitrate-dependent plants. N2-fixing plants partitioned nitrogen to reproductive tissue more efficiently than nitrate-dependent plants as the reproductive tissues of the former and latter contained 65 and 55%, respectively, of the whole-plant nitrogen at the time that nitrogen accumulation in reproductive parts had ceased (133 DAT).

  相似文献   

6.
Summary Restriction fragment length polymorphisms (RFLPs) were used to assess chloroplast DNA (cpDNA) variation in a population of soybeans subjected to continuous cycles of forced outcrossing. This population was derived by crossing 39 female lines with four male-sterile (Ms2ms2) maintainer lines and advancing each generation by selecting only outcrossed seed borne on male-sterile (ms2ms2) plants. Analysis of the original 39 female lines revealed three groups based on cpDNA RFLPs. These three groups had been previously documented in soybeans, and the distribution of these groups among the female parents of this population was similar to that observed in germ plasm surveys of soybean. Thirty-four of the female parents had group I cpDNA, 3 had group II, and 2 had group III. Plants collected from this population after seven cycles of outcrossing were scored for four morphological traits (flower color, pubescence color, seed color, and pubescence type) known to be controlled by alleles at single nuclear loci. The frequencies of the phenotypes observed in this study indicated that the population underwent random mating with respect to flower and pubescence color, but deviated from random mating at the other two loci. Analysis of 158 of these same plants collected from the population after seven cycles of outcrossing revealed no individuals with group II or group III cpDNAs. The fixation of the group I cpDNA marker in this outcrossing population was judged to result primarily from selection against individuals in the population with the rare cpDNAs.Published as Paper no. 9640, Journal Series, Nebraska Agric Res Div Project no. 12-187. This research was supported in part by the University of Nebraska-Lincoln Research Council and NIH Biomedical Research Support Grant # RR-07055  相似文献   

7.
The objectives of this study were to determine the effect of pod and seed development on leaf chlorophyll concentration, and on activities of leaf ribulose bisphosphate carboxylase, leaf nitrate reductase, and root nodule acetylene reduction in field-grown soybean (Glycine max [L.] Merr.). Two genetic male-sterile lines and their fertile counterparts (Williams and Clark 63) were compared in both 1978 and 1979. Two additional lines (Wells × Beeson and Wells × Corsoy) were compared in 1979.

The expression of male-sterile character was nearly complete as very little outcrossing due to insect pollinators was observed. Male-sterile plants showed a delayed late season decline in leaf chlorophyll content and ribulose bisphosphate carboxylase activity when compared with fertile plants. A slight delay in the loss of in vivo leaf nitrate reductase activity was also observed for male-sterile plants. Root nodule fresh weight and acetylene reduction activity declined slightly more rapidly for fertile lines than for male-sterile lines in both years with differences significant on the last two to three sampling dates as leaf loss occurred in the control plants.

Seed development was found to increase slightly, the rate of decline of metabolic activity in fertile lines compared with that of male-sterile lines. However, pod development was not an a priori requirement for leaf and root nodule senescence. Male-sterile plants also lost photosynthetic and nitrogen metabolic competence, but at a slower rate. These results support the concept that pod and seed development does not signal monocarpic senescence per se but rather affects the rate at which senescence occurs after flowering.

  相似文献   

8.
Soybean (Glycine max L. Merr.) germplasm, isogenic except for loci controlling male sterility (ms1), was utilized to study the effects of reproductive development on certain aspects of photosynthesis. Plants were sampled at various times between flowering (77 days after transplanting) and maturity (147 days after transplanting). During that period photosynthetic rates declined more rapidly in the male-sterile genotypes than male-fertile genotypes; and after 105 days, the sterile genotypes maintained low but relatively constant carbon exchange rates. The decline of leaf photosynthesis in the male-sterile genotype occurred concomitantly with an inhibition of the photosynthetic electron transport chain associated with photosystem II. Changes in photosystem I activities, cytochrome f levels, and chlorophyll a/b ratios per se were not responsible for the decline in whole leaf photosynthesis. These conditions were independent of the source of nitrogen nutrition. Lipid analyses of the thylakoids revealed that a loss of phosphatidylglycerol was highly correlated with the inhibition of photosystem II activity. These results suggested a relation between the decline in leaf carbon exchange and the decline in photosynthetic electron transport activity.  相似文献   

9.
Instability of s male-sterile cytoplasm in maize   总被引:4,自引:0,他引:4  
Singh A  Laughnan JR 《Genetics》1972,71(4):607-620
A number of S male-sterile plants from several shrunken-2 inbred lines were crossed initially with an R138-TR inbred line pollinator carrying the nonrestoring genotype for S sterile cytoplasm. One such cross, involving a male-sterile female parent from inbred line M825, produced, unexpectedly, a number of male-fertile F1 progeny, along with the expected male-sterile off-spring. Pollen records of plants in F2, F3 and F4 progenies in the exceptional pedigree, and of a variety of testcross and backcross progenies from these male-fertile exceptions, indicate that the exceptional male fertility is not attributable to the action of either dominant or recessive nuclear restorer genes. They are, however, consistent with the hypothesis that the event responsible for the appearance of exceptional male-fertile offspring among progeny of the original cross involved a change from male-sterile to male-fertile condition in the cytoplasm of the male-sterile M825 plant involved as the female parent in this cross. It appears that this plant bore an ear in which there was a relatively early mutational event at the cytoplasmic level resulting in a chimera involving some kernels which carried S male-sterile cytoplasm, and others which carried the mutated fertile cytoplasmic condition. The finding of a number of additional ear chimeras supports this contention.—The evidence suggests that the change from sterile to fertile cytoplasm has occurred in a number of other instances. The male-sterile line M825 is especially prone to this change. These findings are of particular interest because it has heretofore been considered that both S and T types of male-sterile cytoplasm are highly stable.—The data presented here are not sufficient to support the notion that the exceptional event involves a qualitative change, analogous to gene mutation, in a cytoplasmic entity governing the expression of male fertility. It is equally plausible that the exceptional male fertility is the result of occasional transfer of normal cytoplasm through the male germ cells of maintainer parents.  相似文献   

10.
To investigate the short-term (30–240 min) interactions among nitrogenase activity, NH4+ assimilation, and plant glycolysis, we measured the concentrations of selected C and N metabolites in alfalfa (Medicago sativa L.) root nodules after detopping and during continuous exposure of the nodulated roots to Ar:O2 (80:20, v/v). Both treatments caused an increase in the ratios of glucose-6-phosphate to fructose-1,6-bisphosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, phosphoenolpyruvate (PEP) to pyruvate, and PEP to malate. This suggested that glycolytic flux was inhibited at the steps catalyzed by phosphofructokinase, pyruvate kinase, and PEP carboxylase. In the Ar:O2-treated plants the apparent inhibition of glycolytic flux was reversible, whereas in the detopped plants it was not. In both groups of plants the apparent inhibition of glycolytic flux was delayed relative to the decline in nitrogenase activity. The decline in nitrogenase activity was followed by a dramatic increase in the nodular glutamate to glutamine ratio. In the detopped plants this was coincident with the apparent inhibition of glycolytic flux, whereas in the Ar:O2-treated plants it preceded the apparent inhibition of glycolytic flux. We propose that the increase in the nodular glutamate to glutamine ratio, which occurs as a result of the decline in nitrogenase activity, may act as a signal to decrease plant glycolytic flux in legume root nodules.  相似文献   

11.
A comparative study of microsporogenesis in fertile and in male sterile (ms1) soybean plants (Glycine max (L.) Merr.) was conducted by using various microscopic techniques. Once the developmental pattern for fertile microsporogenesis was established, it was compared with the developmental pattern in sterile plants to determine the time of microsporogenesis breakdown. Sterility of the ms1 mutant is caused by failure of cytokinesis after telophase II. The four nuclei resulting from meiosis become enclosed in a single-celled structure, termed a coenocytic microspore. These microspores develop a pollen-like wall and become engorged with lipid and starch reserves. Coenocytic microspores usually degenerate after engorgement. This study of fertile and sterile (ms1) microsporogenesis has shown that nuclear and cytoplasmic events must occur at precise times for the successful development of 1n pollen grains from 2n sporogenous cells. Any disruption during this process leads to sterility.  相似文献   

12.
The effect of waterlogging of root nodules on nitrogenase activity and synthesis was studied in Pisum sativum inoculated with Rhizobium leguminosarum (strain PRE). It was shown that: 1. nitrogenase activity of intact pea plants was decreased by waterlogging, 2. this decrease was paralleled by a decline of the amount of active nitrogenase determined in toluene EDTA treated bacteroids, 3. SDS-polyacrylamide gel electrophoresis revealed that the amount of nitrogenase component II (CII) decreased by waterlogging while the amount of component I (CI) was not markedly affected, and 4. analysis of bacteroid proteins after 35SO4 labeling of pea plants showed that CII synthesis was repressed while CI synthesis continued indicating that the synthesis of CI and CII is regulated by independent mechanisms.  相似文献   

13.
Energy status and functioning of phosphorus-deficient soybean nodules   总被引:10,自引:1,他引:9       下载免费PDF全文
Sa TM  Israel DW 《Plant physiology》1991,97(3):928-935
Characterization of the effects of long-term P deficiency and of onset and recovery from P deficiency on bacteroid mass and number per unit nodule mass and energy status of soybean (Glycine max L. Merr.) nodules was used to investigate the mechanisms by which P deficiency decreases symbiotic N2 fixation. The continuous P deficiency treatment (0.05 millimolar P) significantly decreased the whole plant dry mass, P, and N by 62, 90, and 78%, respectively, relative to the P-sufficient control (1.0 millimolar) at 44 days after transplanting. Specific nitrogenase activity was decreased an average of 28% over a 16-day experimental period by P deficiency. Whole nodules of P-deficient controls contained 70 to 75% lower ATP concentrations than nodules of P-sufficient controls. Energy charge and ATP concentrations in the bacteroid fraction of nodules were not significantly affected by P treatment. However, ATP and total adenylate concentrations and energy charge in the plant cell fraction of nodules were significantly decreased 91, 62, and 50%, respectively, by the P deficiency treatment. Specific nitrogenase activity, energy charge, and ATP concentration in the plant cell fraction increased to the levels of nonstressed controls within 2, 2, and 4 days, respectively, after alleviation of external P limitation, whereas bacteroid mass per unit nodule mass and bacteroid N concentration did not increase to the level of nonstressed controls until 7 days after alleviation of external P limitation. All of these parameters except bacteroid mass per unit nodule mass decreased to the levels of the P-deficient controls by 11 days after onset of external P limitation. Concentration of ATP in the bacteroid fraction was not significantly affected by alteration in the external P supply. Energy charge in the bacteroid fraction from plants recovering from P deficiency was decreased to a small (10%) but significant extent (P < 0.05) at two sampling dates relative to P-sufficient controls. These ATP concentration and energy charge measurements indicate that P deficiency impaired oxidative phosphorylation in the plant cell fraction of nodules to a much greater extent than in the bacteroids. The concurrence of significant changes in specific nitrogenase activity (2 days) and in the energy charge (2 days) and ATP concentration (4 days) in the plant cell fraction during recovery from external P limitation is consistent with the conclusion that P deficiency decreases the specific nitrogenase activity by inhibiting an energy-dependent reaction(s) in the plant cell fraction of the nodules.  相似文献   

14.
Three pairs of isonuclear lines of cytoplasmic male sterile (CMS) and fertile Petunia cells (Petunia hybrida [Hook] Vilm. and Petunia parodii L.S.M.) grown in suspension culture were examined for sensitivity to inhibitors of respiratory electron transport at time-points after transfer into fresh media. Cells from CMS lines differed from cells of fertile lines in their utilization of the cyanide-insensitive oxidase pathway. Under our culture regime, after approximately 3 days of culture cells from the CMS lines exhibited much lower cyanide-insensitive, salicylhydroxamic acid-sensitive respiration than cells from the fertile lines. This respiratory difference was shown to be specific to the mitochondrial alternative oxidase pathway by using other characteristic inhibitors of mitochondrial electron transport in experiments with isolated mitochondria. Immature anthers from CMS plants also showed lower alternative oxidase activity relative to anthers from male fertile plants, but no such difference was detected in leaf tissue, ovary or perianth tissue, or anthers collected just prior to anthesis. A cell line from a fertile plant carrying a nuclear fertility restorer gene and the CMS cytoplasm exhibited increased activity of the alternative pathway compared with the CMS lines.  相似文献   

15.
Application of plant growth regulators (PGRs) to soybean plants is known to induce changes in nitrogenase activity in root nodules, and this led us to hypothesize that PGRs would affect nitrogenase activity in free-living rhizobia cultures. Little is known about the molecular basis of the effects of PGRs on nitrogenase activity in free-living rhizobia cultures. Therefore, a comparative study was conducted on the effects of gibberellins (GA3) and mepiquat chloride (PIX), which regulate plant growth, on the nitrogenase activity of the nitrogen-fixing bacterium Bradyrhizobium japonicum. Fix and nif gene regulation and protein expression in free-living cultures of B. japonicum were investigated using real-time PCR and two-dimensional electrophoresis after treatment with GA3 or PIX. GA3 treatment decreased nitrogenase activity and the relative expression of nifA, nifH, and fixA genes, but these effects were reversed by PIX treatment. As expected, several proteins involved in nitrogenase synthesis were down-regulated in the GA3-treated group. Conversely, several proteins involved in nitrogenase synthesis were up-regulated in the PIX-treated group, including bifunctional ornithine acetyltransferase/N-acetylglutamate synthase, transaldolase, ubiquinol-cytochrome C reductase iron-sulfur subunit, electron transfer flavoprotein subunit beta, and acyl-CoA dehydrogenase. Two-pot experiments were conducted to evaluate the effects of GA3 and PIX on nodulation and nitrogenase activity in Rhizobium-treated legumes. Interestingly, GA3 treatment increased nodulation and depressed nitrogenase activity, but PIX treatment decreased nodulation and enhanced nitrogenase activity. Our data show that the nif and fix genes, as well as several proteins involved in nitrogenase synthesis, are up-regulated by PIX and down-regulated by GA3, respectively, in B. japonicum.  相似文献   

16.
The relationship between the rates of nitrogenase, nitrate reductase, and glutamine synthetase activities, and plant ontogeny in rice (Oryza sativa L.), cultivar `M9', grown in salt marsh sediment with and without nitrate treatment was studied. In both treatments, nitrogenase activity measured as the immediate linear rate of acetylene reduction by bacteria associated with the roots varied with plant age. In control plants, the nitrogenase activity developed during the vegetative stage, peaked during early reproductive growth and then declined. The application of 10 kilograms N per hectare as KNO3 once every 2 weeks delayed the development of and decreased the nitrogenase activity. The nitrogenase activity in both treatments developed as leaf nitrate reductase activity declined. The per cent nitrogen of roots was negatively correlated with the rates of acetylene reduction during the life cycles of control and nitrate-treated plants. This suggests that the concentration of combined nitrogen in the plants controlled the development and rate of root-associated nitrogenase activity. During reproductive growth, no nitrate reductase activity was detected in the roots from either treatment. In control plants, the patterns of nitrogenase activity and glutamine synthetase activity in the roots were similar. Thus, rice roots have the potential to assimilate ammonia while fixing N2. During the vegetative and early reproductive stages of growth, the development of maximal rates of nitrogenase activity coincided with an increase of total nitrogen of the plants in both treatments.  相似文献   

17.
Soybean (Glycine max L. Merr) plants grown under control (360 µmol mol?1) or elevated CO2 concentration (800 µmol mol?1) from 33 to 42 d after sowing were assayed for various components of in vivo nitrogenase activity to test the hypothesis that increasing carbohydrate supply to nodules would increase the potential (i.e. O2 saturated) nitrogenase activity and impose a more severe O2 limitation on both nodule metabolism and total nitrogenase activity. Within 51 h of elevated CO2 treatment, significant increases relative to control plants were seen in total nitrogenase activity expressed per plant. After 6 d of elevated CO2, the total nitrogenase activity per plant was 18% higher than that in control. This was attributed to an initial increase in nodule size, and a subsequent increase in nodule number following plant exposure to elevated CO2. However, after 9 d of elevated CO2, the potential and total nitrogenase activities per gram nodule dry weight were lower, not higher than corresponding values in plants in the control treatment. These results did not support the hypothesis. It was concluded that the metabolic capacity of the control nodules were not limited by carbohydrate supply, at least at the assay temperatures employed here.  相似文献   

18.
19.
Salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and their interactions mediate plant responses to pathogen and herbivore attack. JA-SA and JA-ET cross-signaling are well studied, but little is known about SA-ET cross-signaling in plant-herbivore interactions. When the specialist herbivore tobacco hornworm (Manduca sexta) attacks Nicotiana attenuata, rapid and transient JA and ET bursts are elicited without significantly altering wound-induced SA levels. In contrast, attack from the generalist beet armyworm (Spodoptera exigua) results in comparatively lower JA and ET bursts, but amplified SA bursts. These phytohormone responses are mimicked when the species' larval oral secretions (OSSe and OSMs) are added to puncture wounds. Fatty acid-amino acid conjugates elicit the JA and ET bursts, but not the SA burst. OSSe had enhanced glucose oxidase activity (but not β-glucosidase activity), which was sufficient to elicit the SA burst and attenuate the JA and ET levels. It is known that SA antagonizes JA; glucose oxidase activity and associated hydrogen peroxide also antagonizes the ET burst. We examined the OSMs-elicited SA burst in plants impaired in their ability to elicit JA (antisense [as]-lox3) and ET (inverted repeat [ir]-aco) bursts and perceive ET (35s-etr1b) after fatty acid-amino acid conjugate elicitation, which revealed that both ET and JA bursts antagonize the SA burst. Treating wild-type plants with ethephone and 1-methylcyclopropane confirmed these results and demonstrated the central role of the ET burst in suppressing the OSMs-elicited SA burst. By suppressing the SA burst, the ET burst likely facilitates unfettered JA-mediated defense activation in response to herbivores that otherwise would elicit SA.  相似文献   

20.
Soybean plants (Glycine max [L.] Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR+ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR rhizobia appeared to be too low to explain the inhibition of nitrogenase. Carbohydrate composition was similar in control nodules and nodules receiving 15 millimolar nitrate suggesting that the inhibition of nitrogenase by nitrate was not related to the availability of carbohydrate.

Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N2 fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR+ and one NR. The high nitrate treatment did not affect the allantoate/allantoin ratio or the proportion of amino N or ureide N in bacteroids (4%) and cytosol (96%).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号