首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our group (Magkos F, Wright DC, Patterson BW, Mohammed BS, Mittendorfer B, Am J Physiol Endocrinol Metab 290: E355-E362, 2006) has recently demonstrated that a single, prolonged bout of moderate-intensity cycling (2 h at 60% of peak oxygen consumption) in the evening increases basal whole-body free fatty acid (FFA) flux and fat oxidation, decreases hepatic VLDL-apolipoprotein B-100 (apoB-100) secretion, and enhances removal efficiency of VLDL-triglyceride (TG) from the circulation the following day in untrained, healthy, lean men. In the present study, we investigated the effect of a single, shorter-duration bout of the same exercise (1 h cycling at 60% of peak oxygen consumption) on basal FFA, VLDL-TG, and VLDL-apoB-100 kinetics in seven untrained, healthy, lean men by using stable isotope-labeled tracer techniques. Basal FFA rate of appearance in plasma and plasma FFA concentration were approximately 55% greater (P < 0.05) the morning after exercise than rest, whereas resting metabolic rate and whole-body substrate oxidation rates were not different after rest and exercise. Exercise had no effect on plasma VLDL-TG and VLDL-apoB-100 concentrations, hepatic VLDL-TG and VLDL-apoB-100 secretion rates, and VLDL-TG and VLDL-apoB-100 plasma clearance rates (all P > 0.05). We conclude that in untrained, healthy, lean men 1) the exercise-induced changes in basal whole-body fat oxidation, VLDL-TG, and VLDL-apoB-100 metabolism during the late phase of recovery from exercise are related to the duration of the exercise bout; 2) single sessions of typical recreational activities appear to have little effect on basal, fasting plasma TG homeostasis; and 3) there is a dissociation between systemic FFA availability and VLDL-TG and VLDL-apoB-100 secretion by the liver.  相似文献   

2.
Dyslipidemia, manifested by increased plasma triglyceride (TG), increased total and LDL-cholesterol concentrations and decreased HDL-cholesterol concentration, is an important risk factor for cardiovascular disease. Premenopausal women have a less atherogenic plasma lipid profile and a lower risk of cardiovascular disease than men, but this female advantage disappears after menopause. This suggests that female sex steroids affect lipoprotein metabolism. The impact of variations in the availability of ovarian hormones during the menstrual cycle on lipoprotein metabolism is not known. We therefore investigated whether very-low-density lipoprotein (VLDL)-TG and VLDL-apolipoprotein B-100 (apoB-100) kinetics are different during the follicular (FP) and luteal phases (LP) of the menstrual cycle. We studied seven healthy, premenopausal women (age 27 +/- 2 yr, BMI 25 +/- 2 kg/m(2)) once during FP and once during LP. We measured VLDL-TG, VLDL-apoB-100, and plasma free fatty acid (FFA) kinetics by using stable isotope-labeled tracers, VLDL subclass profile by nuclear magnetic resonance spectroscopy, whole body fat oxidation by indirect calorimetry, and the plasma concentrations of lipoprotein lipase (LPL) and hepatic lipase (HL) by ELISA. VLDL-TG and VLDL-apoB-100 concentrations in plasma, VLDL-TG and VLDL-apoB-100 secretion rates and mean residence times, VLDL subclass distribution, FFA concentration and rate of appearance in plasma, whole body substrate oxidation, and LPL and HL concentrations in plasma were not different during the FP and the LP. We conclude that VLDL-TG and VLDL-apoB-100 metabolism is not affected by menstrual cycle phase.  相似文献   

3.
There has been more interest in VLDL-triglyceride (TG) kinetics during the last decade. Unfortunately, robust measurement methods are elaborate and not readily available. Here, we describe a method using unique, ex vivo labeling of the fatty acid moiety of VLDL-TG followed by intravenous bolus infusion in the same person. We found that plasma disappearance of ex vivo-labeled VLDL-TG was comparable to that of in vivo-labeled VLDL-TG and that turnover rates can be safely estimated from the log linear decay of VLDL-TG specific activity. We found minor labeling of the plasma FFA (oleate) pool, which was largely attributable to coinfusion of free [14C]triolein; VLDL-TG did not contribute substantially to the plasma FFA pool. The plasma decay curve of VLDL-TG was not affected by the presence of tracer in the FFA pool, provided that the data from 2 h after the VLDL tracer bolus infusion was used. The FFA contamination problem was circumvented by minor modification of the VLDL-TG tracer preparation. The approach we describe should expand the opportunity to study processes that cannot be assessed if the FFA precursor pool is labeled. This method for VLDL-TG tracer preparation can allow measurement of VLDL turnover, tissue uptake of VLDL-TG, and oxidation of VLDL-TG.  相似文献   

4.
The effects of obesity and weight loss on lipoprotein kinetics were evaluated in six lean women [body mass index (BMI): 21 +/- 1 kg/m(2)] and seven women with abdominal obesity (BMI: 36 +/- 1 kg/m(2)). Stable isotope tracer techniques, in conjunction with compartmental modeling, were used to determine VLDL-triglyceride (TG) and apolipoprotein B-100 (apoB-100) secretion rates in lean women and in obese women before and after 10% weight loss. VLDL-TG and VLDL-apoB-100 secretion rates were similar in lean and obese women. Weight loss decreased the rate of VLDL-TG secretion by approximately 40% (from 0.41 +/- 0.05 to 0.23 +/- 0.03 micromol x kg fat-free mass(-1) x min(-1); P < 0.05). The relative decline in VLDL-TG produced from nonsystemic fatty acids, derived from intraperitoneal and intrahepatic TG, was greater (61 +/- 7%) than the decline in VLDL-TG produced from systemic fatty acids, predominantly derived from subcutaneous TG (25 +/- 8%; P < 0.05). Weight loss did not affect VLDL-apoB-100 secretion rate. We conclude that weight loss decreases the rate of VLDL-TG secretion in women with abdominal obesity, primarily by decreasing the availability of nonsystemic fatty acids. There is a dissociation in the effect of weight loss on VLDL-TG and apoB-100 metabolic pathways that may affect VLDL particle size.  相似文献   

5.
A single bout of strenuous endurance exercise reduces fasting plasma triglyceride (TG) concentrations the next day (12-24 h later) by augmenting the efficiency of very low-density lipoprotein (VLDL)-TG removal from the circulation. Although much of the hypotriglyceridemia associated with training is attributed to the last bout of exercise, the relevant changes in VLDL-TG metabolism have never been investigated. We therefore examined basal VLDL-TG kinetics in a group of sedentary young men (n=7) who underwent 2 mo of supervised high-intensity interval training (3 sessions/wk; running at 60 and 90% of peak oxygen consumption in 4-min intervals for a total of 32 min; gross energy expenditure: 446+/-29 kcal) and a nonexercising control group (n=8). Each subject completed two stable isotope-labeled tracer infusion studies in the postabsorptive state, once before and again after the intervention (approximately 48 h after the last exercise bout in the training group). Peak oxygen consumption increased by approximately 18% after training (P 0.7) in VLDL-TG plasma clearance rate and the mean residence time of VLDL-TG in the circulation. No significant changes in VLDL-TG concentration and kinetics were observed in the nonexercising control group (all P >or= 0.3). We conclude that a short period of high-intensity interval aerobic training lowers the rate of VLDL-TG secretion by the liver in previously sedentary men. This is different from the mechanism underlying the hypotriglyceridemia of acute exercise; however, it remains to be established whether our finding reflects an effect of the longer time lapse from the last exercise bout, an effect specific to the type of exercise performed, or an effect of aerobic training itself.  相似文献   

6.
Hypertriglyceridemia is considered a cardiovascular risk factor in diabetic and nondiabetic subjects. In this study, we aimed to determine potential regulators of very low density lipoprotein-triglyceride (TG) production. VLDL-TG kinetics were measured in 13 men and 12 women [body mass index [mean (range)]: 24.8 (20.2-35.6) kg/m(2)]. VLDL-TG production was assessed from the plasma decay of a bolus injection of ex vivo labeled VLDL particles ([1-(14)C]triolein-VLDL-TG). Similar VLDL-TG production (micromol/min) was found in men and women. VLDL-TG production was not significantly correlated with palmitate flux ([9,10-(3)H]palmitate) (r = 0.09, P = 0.67) or palmitate concentration (r = -0.29, P = 0.2) but was correlated significantly with fasting insulin concentration (r = 0.46, P < 0.05) and resting energy expenditure (REE) (r = 0.45, P < 0.05). The latter correlation improved when adjusted for sex. The best multivariate model with VLDL-TG production as the dependent variable and REE, body composition, hormones, and substrate levels as independent variables included fasting insulin (P = 0.02) and REE (P = 0.02) (r(2) = 0.32, P < 0.001). We conclude that VLDL kinetics are similar in men and women and that REE and plasma insulin are significant independent predictors of VLDL-TG production. FFA availability and body fat distribution are unrelated to VLDL production. We suggest that REE plays a greater role in VLDL-TG production than previously anticipated. REE and insulin should be taken into account when VLDL-TG production comparisons between groups are made.  相似文献   

7.
《Journal of lipid research》2017,58(6):1214-1220
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.  相似文献   

8.
Type 2 diabetes mellitus (T2DM) is associated with increased plasma triglyceride (TG) concentrations, but African Americans (AA) have lower plasma TG than Caucasians (CC). We evaluated the hypothesis that obese AA women have lower plasma TG than obese CC women do because of differences in lipid kinetics. Eleven AA and 11 CC obese women with T2DM, matched on body mass index (BMI) (AA = 37 ± 1, CC = 37 ± 1 kg/m2), age, duration of diabetes, percentage body fat, and insulin sensitivity (SI, determined by an intravenous glucose tolerance test), were studied. Plasma TG concentration (AA = 1.14 ± 0.11, CC = 1.88 ± 0.18 mmol/l), FFA rate of appearance (Ra) into plasma (AA = 419 ± 27, CC = 503 ± 31 µmol·min−1), and total VLDL-TG secretion rate (AA = 18 ± 2, CC = 29 ± 4 µmol·min−1) were lower in AA than CC women (all P < 0.05). In contrast, plasma total apolipoprotein (apo)B-100 concentration (AA = 1,542 ± 179, CC = 1,620 ± 118 nmol/l) and VLDL-apoB-100 secretion rate (AA = 1.3 ± 0.1, CC = 1.3 ± 0.1 nmol·min−1) were similar in both groups, so the molar ratio of VLDL-TG secretion rate to VLDL-apoB-100 secretion rate was lower in AA women than in CC women. VLDL-TG concentration was lower in AA women due to lower total VLDL-TG secretion rate. However, the VLDL-apoB-100 secretion rate was the same in both groups, demonstrating that AA women secrete smaller VLDL particles containing less TG than do CC women.  相似文献   

9.
To discover the alterations in lipid metabolism linked to postexercise hypotriglyceridemia, we measured lipid kinetics, lipoprotein subclass distribution and lipid transfer enzymes in seven healthy, lean, young men the day after 2 h of cycling and rest. Compared with rest, exercise increased fatty acid rate of appearance and whole body fatty acid oxidation by approximately 65 and 40%, respectively (P < 0.05); exercise had no effect on VLDL-triglyceride (TG) secretion rate, increased VLDL-TG plasma clearance rate by 40 +/- 8%, and reduced VLDL-TG mean residence time by approximately 40 min and VLDL-apolipoprotein B-100 (apoB-100) secretion rate by 24 +/- 8% (all P < 0.05). Exercise also reduced the number of VLDL but almost doubled the number of IDL particles in plasma (P < 0.05). Muscle lipoprotein lipase content was not different after exercise and rest, but plasma lipoprotein lipase concentration increased by approximately 20% after exercise (P < 0.05). Plasma hepatic lipase and lecithin:cholesterol acyltransferase concentrations were not affected by exercise, whereas cholesterol ester transfer protein concentration was approximately 10% lower after exercise than after rest (P = 0.052). We conclude that 1) greater fatty acid availability after exercise does not stimulate VLDL-TG secretion, probably because of the increase in fatty acid oxidation and possibly also fatty acid use for restoration of tissue TG stores; 2) reduced secretion of VLDL-apoB-100 lowers plasma VLDL particle concentration; and 3) increased VLDL-TG plasma clearance maintains low plasma TG concentration but is not accompanied by similar increases in subsequent steps of the delipidation cascade. Acutely, therefore, the cardioprotective lowering of plasma TG and VLDL concentrations by exercise is counteracted by a proatherogenic increase in IDL concentration.  相似文献   

10.
Tracer methods for VLDL-TG kinetics vary in their ability to account for the effect of tracer recycling, which can influence the calculation of VLDL-TG fractional catabolic rates (FCRs). We evaluated a novel approach, involving stable isotopically labeled glycerol or palmitate tracers in conjunction with compartmental modeling, for measuring VLDL-TG kinetics in normolipidemic human subjects. When administered as a bolus simultaneously, both tracers provided identical VLDL-TG FCRs when the data were analyzed by a compartmental model that accounted for hepatic lipid tracer recycling, but not by non-compartmental analysis. The model-derived FCR was greater than that determined using a non-compartmental approach, and was 2- to 3-fold higher than that usually reported by using a bolus of radioactive [3H]glycerol. When palmitate tracer was given as a constant infusion, VLDL-TG turnover appeared 5-fold slower, because tracer recycling through hepatic lipid pools could not be resolved with the infusion protocol. We conclude that accounting for tracer recycling, particularly the contribution of hepatic glycerolipid pools, is essential to accurately measure VLDL-TG kinetics, and that bolus injection of stable isotopically labeled glycerol or palmitate tracers in conjunction with compartmental modeling analysis offers a reliable approach for measuring VLDL-TG kinetics.  相似文献   

11.
Our objective was to examine very low density lipoprotein-triglyceride (VLDL-TG) kinetics after chronic and acute administration of nicotinic acid (NA). Incorporation of [1,2,3,4-(13)C(4)]palmitate and [2-(13)C(1)]glycerol into VLDL-TG was measured in five healthy, normolipidemic women. Each subject was studied twice; the 4-day hospital stays were separated by 1 mo, during which time doses of NA were increased to 2 g/day (500 mg, 4 times/day). During posttreatment study, 500 mg of NA were administered acutely at 0800. Under baseline postabsorptive conditions, incorporation curves from (13)C-labeled free fatty acid (FFA) and (13)C-labeled glycerol were superimposable, and VLDL-TG kinetics were in agreement (t(1/2) = 1.4 +/- 0.3 and 1.3 +/- 0.3 h, and production rates = 27.2 +/- 6.1 and 28.5 +/- 5.3 g/day, respectively). In the postabsorptive state after chronic NA therapy, VLDL-TG concentrations and production rates were lower despite a trend toward elevated plasma FFA concentrations and fluxes. After the acute dose of NA, plasma FFA concentrations and flux fell dramatically, and there was a virtual halt to VLDL-TG production, which continued throughout the 6-h period after NA, despite a marked rebound overshoot in serum FFA concentrations and flux after hour 2. Plasma homocysteine concentrations increased 68% (P < 0.001) in the NA phase, consistent with chronic increased transmethylation demand. We conclude that 1) NA acutely and chronically decreases VLDL-TG production rate in normal women; 2) the acute effect on VLDL-TG production is associated with an initial suppression of lipolysis but persists for several hours after the antilipolytic action of NA has abated and is observed in the basal postabsorptive state, when lipolytic rates are not reduced; and 3) the effect of NA on VLDL-TG production, therefore, cannot be completely explained by its antilipolytic actions.  相似文献   

12.
Hypertriglyceridemia is common in individuals with human immunodeficiency (HIV) infection, but the mechanisms responsible for increased plasma triglyceride (TG) concentrations are not clear. We evaluated fatty acid and VLDL-TG kinetics during basal conditions and during a glucose infusion that resulted in typical postprandial plasma glucose and insulin concentrations in six men with HIV-dyslipidemia [body mass index (BMI): 28 +/- 2 kg/m2] and six healthy men (BMI: 26 +/- 2 kg/m2). VLDL-TG secretion and palmitate rate of appearance (Ra) in plasma were measured by using stable-isotope-labeled tracer techniques. Basal palmitate Ra and VLDL-TG secretion rates were greater (P < 0.01 for both) in men with HIV-dyslipidemia (1.04 +/- 0.07 micromol palmitate x kg-1 x min-1 and 5.7 +/- 0.6 micromol VLDL-TG x l plasma-1 x min-1) than in healthy men (0.67 +/- 0.08 micromol palmitate. kg-1 x min-1 and 3.0 +/- 0.5 micromol VLDL-TG x l plasma-1 x min-1). Basal VLDL-TG plasma clearance was lower in men with HIV-dyslipidemia (13 +/- 1 ml/min) than in healthy men (19 +/- 2 ml/min; P < 0.05). Glucose infusion decreased palmitate Ra (by approximately 50%) and the VLDL-TG secretion rate (by approximately 30%) in both groups, but the VLDL-TG secretion rate remained higher (P < 0.05) in subjects with HIV-dyslipidemia. These findings demonstrate that increased secretion of VLDL-TG and decreased plasma VLDL-TG clearance, during both fasting and fed conditions, contribute to hypertriglyceridemia in men with HIV-dyslipidemia. Although it is likely that increased free fatty acid release from adipose tissue contributes to the increase in basal VLDL-TG concentration, other factors must be involved, because insulin-induced suppression of lipolysis and systemic fatty acid availability did not normalize the VLDL-TG secretion rate.  相似文献   

13.
Apolipoprotein kinetics are customarily determined by modeling time curves of specific radioactivity or isotopic enrichment in plasma after intravenous infusion of radiolabeled lipoproteins or stable isotope-enriched amino acids. However, this provides no information on the fractional rate of transfer of the apolipoprotein from plasma to interstitial fluid (k(p-if)) or its mean residence time in interstitial fluid (MRT(if)). To determine these parameters for a pharmacologic dose of exogenous apolipoprotein A-I (apoA-I) given intravenously as apoA-I/lecithin discs, we measured apoA-I in plasma and prenodal leg lymph in five healthy men before, during, and after a 4 h infusion at 10 mg/kg/h. ApoA-I concentrations in plasma and lymph were modeled by linear compartmental models (SAAM II version 1.1), using lymph albumin to adjust for the effects of variations in lymph flow rate. k(p-if) averaged 0.75%/h (range, 0.33-1.32), and MRT(if) averaged 29.1 h (14.1-40.0). Neither parameter was correlated with the distribution volume (57-105 ml/kg) or the fractional elimination rate (1.44-2.91%/h) of apoA-I, determined by modeling plasma apoA-I concentration alone. Although used here to study the mass kinetics of apoA-I, if combined with infusion of a tracer, analysis of lymph could also expand the modeling of endogenous apolipoprotein kinetics.  相似文献   

14.
This study aimed to identify the mechanisms of the hypolipidemic action of the selective estrogen receptor modulator (SERM) acolbifene (ACOL). Four weeks of treatment with ACOL reduced fasting and postprandial plasma triglycerides (TGs), an effect associated with lower VLDL-TG secretion rate (-25%), and decreased mRNA of microsomal triglyceride transfer protein (MTP; -29%). ACOL increased liver TG concentration (+100%) and amplified the feeding-induced increase in the master lipogenic regulators sterol-regulatory element binding protein-1a (SREBP-1a) and SREBP-1c. ACOL decreased total, HDL, and non-HDL cholesterol (CHOL) by 50%. SREBP-2 mRNA and HMG-CoA reductase activity were minimally affected by ACOL. However, in the fasted state, liver concentration of scavenger receptor class B type I (SR-BI) protein, but not mRNA, was 3-fold higher in ACOL-treated than in control animals and correlated with plasma HDL-CHOL levels (r = 0.80, P < 0.002). Liver LDL receptor (LDLR) protein, but not mRNA, was increased 2-fold by ACOL, independently of the nutritional status. This study demonstrates that ACOL possesses the unique ability among SERMs to reduce VLDL-TG secretion, likely by reducing MTP expression, and strongly suggests that the robust hypocholesterolemic action of ACOL is related to increased removal of CHOL from the circulation as a consequence of enhanced liver SR-BI and LDLR abundance.  相似文献   

15.
We have previously shown that sex and obesity independently affect basal very low density lipoprotein (VLDL)-triglyceride (TG) kinetics. In the present study, we investigated the effect of hyperglycemia-hyperinsulinemia on VLDL-TG kinetics in lean and obese men and women (n = 6 in each group). VLDL-TG kinetics were measured during basal, postabsorptive conditions and during glucose infusion (5.5 mg x kg FFM(-1) x min(-1)) by using [(2)H(5)]glycerol bolus injection in conjunction with compartmental modeling analysis. Basal VLDL-TG secretion in plasma was greater in obese than in lean men (7.8 +/- 0.6 and 2.9 +/- 0.4 micromol x l plasma(-1) x min(-1); P < 0.001) but was not different in lean and obese women (5.0 +/- 1.1 and 5.9 +/- 1.1 micromol x l plasma(-1) x min(-1)). Glucose infusion decreased the VLDL-TG secretion rate by approximately 50% in lean and obese men and in lean women (to 1.5 +/- 0.4, 4.0 +/- 0.6, and 2.2 +/- 0.4 micromol x l plasma(-1) x min(-1), respectively; all P < 0.05) but had no effect on the VLDL-TG secretion rate in obese women (4.9 +/- 1.0 micromol x l plasma(-1) x min(-1)). These results demonstrate that both sex and adiposity affect the regulation of VLDL-TG metabolism. Glucose and insulin decrease VLDL-TG production in both lean men and lean women; obesity is associated with resistance to the glucose- and insulin-mediated suppression of VLDL-TG secretion in women, but not in men.  相似文献   

16.
The ability of growth hormone (GH) to stimulate lipolysis and cause insulin resistance in skeletal muscle may be causally linked, but the mechanisms remain obscure. We investigated the impact of GH on the turnover of FFA and VLDL-TG, intramuscular triglyceride content (IMTG), and insulin sensitivity (euglycemic clamp) in nine healthy men in a randomized double-blind placebo-controlled crossover study after 8 days treatment with (A) Placebo+Placebo, (B) GH (2 mg daily)+Placebo, and (C) GH (2 mg daily)+Acipimox (250 mgx3 daily). In the basal state, GH (B) increased FFA levels (P<0.05), palmitate turnover (P<0.05), and lipid oxidation (P=0.05), but VLDL-TG kinetics were unaffected. Administration of acipimox (C) suppressed basal lipolysis but did not influence VLDL-TG kinetics. In the basal state, IMTG content increased after GH (B; P=0.03). Insulin resistance was induced by GH irrespective of concomitant acipimox (P<0.001). The turnover of FFA and VLDL-TG was suppressed by hyperinsulinemia during placebo and GH, whereas coadministration of acipimox induced a rebound increase FFA turnover and VLDL-TG clearance. We conclude that these results show that GH-induced insulin resistance is associated with increased IMTG and unaltered VLDL-TG kinetics; we hypothesize that fat oxidation in muscle tissue is an important primary effect of GH and that circulating FFA rather than VLDL-TG constitute the major source for this process; and the role of IMTG in the development of GH-induced insulin resistance merits future research.  相似文献   

17.
Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of FFA reesterification are carried out before FFA release into plasma, whereas the rest consists of plasma FFA extracted by adipose tissue. Thirty-six percent of the fasting lipolytic flux is accounted for by oxidation of plasma FFA, whereas only a minor fraction is channeled into hepatic very low density lipoprotein-triglycerides (VLDL-TG). Total body calorigenesis induced by thyroid hormone treatment and liver-specific calorigenesis induced by treatment with beta, beta'-tetramethylhexadecanedioic acid (Medica 16) are characterized by a 1.7- and 1.3-fold increase in FFA oxidation, respectively, maintained by a 1.5-fold increase in adipose fat lipolysis. Hepatic reesterification of plasma FFA into VLDL-TG is negligible under both calorigenic conditions. Hence, total body fatty acid metabolism is regulated by adipose tissue as both source and sink. The futile nature of fatty acid cycling allows for its fine tuning in response to metabolic demands.  相似文献   

18.
Apolipoprotein C-III (apoC-III) is an important regulator of lipoprotein metabolism. Radioisotope and stable isotope kinetic studies show differing results in relation to the kinetics of apoC-III in HDL. Kinetic analysis of HDL apoC-III may be difficult because of its low concentration, as well as the presence of other apoproteins at higher concentration, in the HDL fraction. We used Intralipid(R) (IL), known to preferentially extract apoC proteins from plasma, as a means of extracting apoC-III from HDL before apoprotein separation by isoelectric focusing gel electrophoresis for the measurement of tracer enrichment. Protein purity was assessed by an isoleucine-to-leucine (Ile/Leu) ratio, as apoC-III contains no isoleucine. We compared apoC-III kinetics in 14 men using a bolus infusion of deuterated leucine. The Ile/Leu ratio for IL-extracted HDL (IL-HDL) apoC-III (3.0 +/- 0.7%) was not different from that of VLDL apoC-III (2.6 +/- 0.6%) but was significantly lower than that of untreated HDL apoC-III (9.0 +/- 2.9%) (P < 0.001). The isotopic enrichment curves and fractional catabolic rates (FCRs) for IL-HDL apoC-III were not different from those of VLDL apoC-III. In contrast, HDL apoC-III had significantly lower isotopic enrichments and FCRs than IL-HDL apoC-III (P < 0.001). In conclusion, this simple IL method can be used to isolate apoC-III from HDL with minimal interference from other HDL apoproteins, and it demonstrates that the kinetics of apoC-III in VLDL and HDL are similar, supporting the concept of a single kinetically homogeneous pool of apoC-III in plasma.  相似文献   

19.
Previous studies have shown that overexpression of human apolipoprotein C-I (apoC-I) results in moderate hypercholesterolemia and severe hypertriglyceridemia in mice in the presence and absence of apoE. We assessed whether physiological endogenous apoC-I levels are sufficient to modulate plasma lipid levels independently of effects of apoE on lipid metabolism by comparing apolipoprotein E gene-deficient/apolipoprotein C-I gene-deficient (apoe-/-apoc1-/-), apoe-/-apoc1+/-, and apoe-/-apoc1+/+ mice. The presence of the apoC-I gene-dose-dependently increased plasma cholesterol (+45%; P < 0.001) and triglycerides (TGs) (+137%; P < 0.001), both specific for VLDL. Whereas apoC-I did not affect intestinal [3H]TG absorption, it increased the production rate of hepatic VLDL-TG (+35%; P < 0.05) and VLDL-[35S]apoB (+39%; P < 0.01). In addition, apoC-I increased the postprandial TG response to an intragastric olive oil load (+120%; P < 0.05) and decreased the uptake of [3H]TG-derived FFAs from intravenously administered VLDL-like emulsion particles by gonadal and perirenal white adipose tissue (WAT) (-34% and -25%, respectively; P < 0.05). As LPL is the main enzyme involved in the clearance of TG-derived FFAs by WAT, and total postheparin plasma LPL levels were unaffected, these data demonstrate that endogenous apoC-I suffices to attenuate the lipolytic activity of LPL. Thus, we conclude that endogenous plasma apoC-I increases VLDL-total cholesterol and VLDL-TG dose-dependently in apoe-/- mice, resulting from increased VLDL particle production and LPL inhibition.  相似文献   

20.

Background

Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG) concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known.

Objective

The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women.

Design

Ten healthy women (age: 22.0±2.9 years, BMI: 21.2±1.3 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii) hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition.

Results

Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on VLDL-TG concentration and kinetics compared to the control trial.

Conclusion

Acute dietary energy deficit (∼3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ) does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号