首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of the tracer substance horseradish peroxidase (HRP, Mw 40,000) in the neuro-intermediate lobe of the lizard, Anolis carolinensis, was studied at various time intervals (13 min to 24 h) after vascular injection. HRP rapidly entered the extracellular lumen of the neural lobe, but did not penetrate into the third ventricle. The tracer was found in micropinocytotic vesicles (MPVs) of ependymal cells within 13 min after injection. The number of cellular inclusions containing HRP increased during the period of observation (24 h). The tracer was sparsely taken up by aminergic and peptidergic nerve terminals of the external layer. After transection of the hypophysial stalk, numerous dense, labelled droplets were found in the peptidergic terminals, and the number of labelled inclusions in ependymal cells increased.MPVs were frequently found in extensions of stellate cells of the intermediate lobe, and endocytotic vacuoles (EVs) developed especially in the perikaryon. HRP was also found in large cisternae of the secretory cells, appearing predominantly towards the perivascular septum (PVS). These cisternae were found to communicate with the extracellular lumen, probably representing a system of the extracellular space extending into the secretory cell. After transection of the hypophysial stalk, there was an increase in the number of small EVs in secretory cells of the intermediate lobe.The results are discussed in terms of MSH-release regulation and possible participation of the extracellular lumen, glial and stellate cells in the transport of regulating factors and secretory material.Supported by grants from the Swedish Natural Science Research Council (to Dr. Patrick Meurling) and the Royal Physiographic Society of LundThe author is indebted to Mrs. Lena Sandell and Miss Inger Norling for excellent technical assistance and photographic aid; and to Dr. Rolf Libelius and Dr. Ingmar Lundquist for generous advice and stimulating discussions concerning the tracer technique  相似文献   

2.
Summary Glial cells that contain the glial fibrillary acidic protein (GFAP; the major protein constituent of glial filaments) were stained immunohistochemically in thick frozen sections of the neurohypophysis of the Mongolian gerbil (Meriones unguiculatus). The resulting Golgi-like images provided informations on cytological features and distributional patterns of tanycytes and pituicytes. In the proximal median eminence, numerous bundled processes of tanycytes were revealed. They emerged from the ependymal and subependymal layer and mostly reached the brain surface. Several tanycytic processes extended into the anatomical neural stalk. In the whole neural lobe, a dense network of GFAP-immunoreactive pituicyte processes was visualized. Stained pituicytes were highly asymmetric and exhibited a great morphological variability. Immunopositive fibers which were encountered in the intermediate lobe might be derived from pituicytes. Electron-microscopically further evidence was obtained that GFAP-positive pituicytes correspond to filament-rich fibrous pituicytes at the ultrastructural level.  相似文献   

3.
Summary Morphological changes in the disconnected neuro-intermediate lobe were studied in the lizard, Anolis carolinensis from the 2nd to the 14th post-operative day using a threefold aldehyde fixative (Rodríguez, 1969). Two phases of colour change capacity were exhibited: Phase I started immediately after the transection, lasted for 6 days (mean) and was characterised by an excessive MSH release (brown skin). This phase proceeded gradually into Phase II, designated by an interruption of the MSH release (green skin).The degenerative processes and final elimination of neurons in the disconnected neural lobe propagate in a rostro-caudal direction from the transected area. The aminergic fibres (Type II) disappear within 2 days postoperatively, whereas the degeneration continues for more than 10 days in the peptidergic fibres (Type III, IV and V). The glia cells (ependyma and pituicytes) serve as very active macrophages, engulfing fragments of axons already affected by autolysis and transferring them into glial lysosomes. No apparent morphological changes occur in the shift from Phase I to II.The great majority of the secretory cells of the intermediate lobe are not affected by degenerative processes and appear to be markedly activated by the stalk transection. They exhibit numerous mitochondria, well-developed Golgi complexes forming numerous Golgi vesicles and extensive parallel cisternae of the rough endoplasmic reticulum, sometimes forming large intracisternal droplets (7 m in diameter). Numerous pale vacuoles are seen, especially toward the intact capillaries, suggesting their coupling to the MSH release by extension of the active membrane area toward the perivascular septum. The number of these vacuoles is very markedly reduced in Phase II (no release), whereas the formation of new granules seems to proceed in early stages. The interruption of the MSH release implies a successive refilling of gradually growing secretory granules and a concomitant reduction in the development of the synthetic apparatus. Mechanisms probably involved in the control of the synthesis and release of MSH are discussed.Supported by grants from the Swedish Natural Science Research Council (to P. Meurling) and the Royal Physiographic Society of LundThe authors are indebted to Mrs. Lena Sandell, Mrs. Ingrid Hallberg and Mrs. Kirsten Thörneby for technical assistance and skillful attention of the animals and to Miss Inger Norling for photographic aid.  相似文献   

4.
The neurohypophysial lobe is a thin-walled sac that, except for a few blood vessels, lacks any anatomical link with the adenohypophysis. Its wall consists of ependymal, fiber and palisade zones and is surrounded by blood vessels. The lobe is differentiated into distinct dorsal and ventral regions. The dorsal wall is doubly innervated by Gomori-positive axons arising in the anterior hypothalamus and by Gomori-negative fibers of unknown origin. Its surface is covered by an extensive vascular plexus. The ventral wall is innervated only by Gomori-negative fibers and is sparsely supplied with a few fine capillaries. All of the ependymal cells in both regions have the same ultrastructural appearance. The Gomori-positive or Type I axons are identified at the electron microscope level as fibers containing elementary granules with a diameter of 150–230 run. The Gomori-negative or Type II fibers contain dense-cored vesicles that vary from 80–125 nm in diameter. Both Type I and II fibers form synaptic-like complexes with the processes and end-feet of the ependymal cells. Type I axons also abut on the basal lamina bounding the perivascular spaces. It is suggested that the agranular reticulum of the ependymal cells may provide a transport pathway for neural products that are destined for release into the circulation. It is also possible that the ependyma itself is a target of neural activity.  相似文献   

5.
Summary In the neuro-intermediate lobe (NIL) of the eel, Anguilla anguilla, a specific formaldehyde-induced fluorescence, indicating a catecholamine (CA) innervation, has been demonstrated in the neural lobe processes. Microspectrofluorimetric analyses and pharmacological treatments indicate noradrenaline or dopamine or both to be responsible for the fluorescence.The fluorescence in the NIL has displayed a definite tendency toward variation during the adaptation to a white and to a black background. The highest amounts of fluorescence were generally found in animals adapted to a black background, especially when adapted for a rather long period, and in animals recently transferred to a white background. The lowest amounts of fluorescence were generally found in animals adapted to a white background.This and the result of injections of CA-depleting drugs suggest that the monoaminergic nerves are active when the animal is on a white background, inhibiting the MSH release directly or indirectly or both, or in co-operation with other factors.Specific green fluorescent structures were also found in other parts of the neural lobe supplying the pars distalis.In some pharmacologically untreated specimens and in animals treated with CA-depleting drugs, the intermedia cells fluoresced. Microspectrofluorimetric analyses indicated that this fluorophore was not a CA.We wish to express our sincere thanks to Miss Ingrid Carlsen for excellent technical assistance, Mr. Lajos Erdös for the photography and the technical staff of the Department of Histology in Lund. We are also indepted to Dr. Anders Björklund for valuable discussion and advice.Supported by grants from the Swedish Natural Science Research Council, the University of Lund, and the Royal Physiographic Society of Lund.  相似文献   

6.
The pituitary vascular system of Anolis carolinensis is similar to that of other lizards. Distinct portal vessels connect the primary plexus of the median eminence with the secondary plexus of the pars distalis. The primary plexus has some connections with the neural lobe. The neural lobe plexus is fed by separate arteries, and drains into the pars intermedia. The latter lobe receives its blood supply by this route. The pituitary is drained into the vena retrohypophysea. The findings are discussed in relation to existing theories regarding the neurovascular control of the pars intermedia.  相似文献   

7.
P Redecker 《Histochemistry》1987,87(6):585-595
Glial cells that contain the glial fibrillary acidic protein (GFAP; the major protein constituent of glial filaments) were stained immunohistochemically in thick frozen sections of the neurohypophysis of the Mongolian gerbil (Meriones unguiculatus). The resulting Golgi-like images provided informations on cytological features and distributional patterns of tanycytes and pituicytes. In the proximal median eminence, numerous bundled processes of tanycytes were revealed. They emerged from the ependymal and sub-ependymal layer and mostly reached the brain surface. Several tanycytic processes extended into the anatomical neural stalk. In the whole neural lobe, a dense network of GFAP-immunoreactive pituicyte processes was visualized. Stained pituicytes were highly asymmetric and exhibited a great morphological variability. Immunopositive fibers which were encountered in the intermediate lobe might be derived from pituicytes. Electron-microscopically further evidence was obtained that GFAP-positive pituicytes correspond to filament-rich fibrous pituicytes at the ultrastructural level.  相似文献   

8.
Summary The topography of oxytocin (OT)- and vasopressin (VP)-containing axons of the hypothalamo-neurohypophyseal system was studied in the neurohypophysis of the Djungarian hamster (Phodopus sungorus) by means of immunohistochemistry. Compared with other mammalian species, the neurohypophysis of Phodopus shows some peculiarities. Accumulations of OT-immunoreactivity around the distal vessels of the primary portal plexus can be observed in the distal median eminence and neural stem. This staining pattern indicates that OT is secreted into portal blood. In the neural lobe, OT- and VP-immunopositive fibers terminate in different areas. The vast majority of the OT-containing axons is distributed in the dorsal part of the neural lobe. In contrast, VP-containing axons are mainly found in the centre of the neural lobe up to the pars intermedia.  相似文献   

9.
Summary The hypothalamohypophyseal system of the mouse, rat, guinea-pig, cat, dog and monkey (Macaca mulatta) was studied with the fluorescence method for catecholamine-containing neurons developed by Falck et al. (1962). The fluorescent fibers are prominent in the external layer and around the primary portal plexus of the infundibulum and in the peripheral region of the neural lobe of these animals, particulary on the external surface and surrounding the primary capillary loops. These fluorescent fibers are connected with fluorescent cells in the arcuate nuclei, and this connection coincides with the tuberohypophyseal system. The neurons of this system have a particular affinity for dopamine, possibly due to their own content of dopamine. In the supraoptic and paraventricular nuclei, no fluorescent cells were found. In the pars intermedia, we also found catecholamine-containing fibers.The presence of catecholamine-containing fibers in the adeno- and neurohypophysis are considered in relation to other data derived from fluorescence and electron microscopy.  相似文献   

10.
Summary In the mouse, the rostral zone of the pars intermedia is almost exclusively composed of typical corticotrophic cells. They are located around and even within the neural stalk, at the level of transition between stalk and neural lobe. In the rat, the corticotrophic cells of the rostral zone are found in scattered islets among the MSH producing cells, and also in the neural lobe. In both the rat and mouse, these cells are in direct contact with various types of nerve terminals. Synaptoid contacts with aminergic and neurosecretory nerve fibers are observed. Furthermore they are also closely related to the hypophysial portal vessels. Following adrenalectomy, the cells located in the neurohypophysis always react more intensely than tose in the rostral zone. The functional significance of these corticotrophic cells which are subject to both humoral and neural regulation remains as yet hypothetical. Their participation in neurogenic stress response seems probable.  相似文献   

11.
用光学显微镜对北草蜥(Takydromus septentrionalis)中脑视叶组织学结构进行了观察。视叶分为背侧的顶盖和腹侧的被盖,两者无明显界限。顶盖处灰质和白质交替排列。由表及里,可分为分子层、外灰质层、浅白质层、中灰质层、中白质层、深灰质层、深白质层和室管膜层。被盖处细胞层次不明显。在视叶的前部有横行的纤维将左右视叶联系起来。左右视叶室与中脑水管以及两视叶间的纵沟在视叶的中、后部相通。同时将北草蜥的中脑与其它低等脊椎动物进行了比较,推测北草蜥在进化上处于较低等地位。  相似文献   

12.
Summary The capacity of colour change in intact lizards and in animals with a transected hypophysial stalk was studied during extended periods. It was concluded that, with certain exceptions, the skin colour of the lizards gives information on the circulating levels of MSH, and thereby on the function of the pars intermedia.After transection of the hypophysial stalk, three phases of chromatic behaviour were recognised. During Phase I, which lasted for about 6 days (average), dark skin was retained irrespective of the colour of the background (= high MSH levels), whereas Phase II (19 days) was characterised by the inability of the animals to become brown (= low MSH levels). A gradual recovery toward normal adaptive capacity was seen during Phase III.In the disconnected neuro-intermediate lobe, aldehyde fuchsin (AF)-positive material in the rostral region rapidly clumped and disappeared within a few days. In the caudal portion, the stainability and the varicose arrangement of fibres were retained longer, but disappeared within approximately 14 days after the operation. Proximal to the lesion, the preoptic system exhibited a marked increase in stainability with AF, starting in the median eminence and progressing in a retrograde direction toward the peptidergic nuclei.Revascularisation of the disconnected neuro-intermediate lobe occurred during the first few days. A reinnervation of AF-fibres across the transected area into the neural lobe was observed during Phase III in most animals, but AF-fibres did not reoccupy the entire lobe. In association with an outgrowth of capillaries, the regenerating fibres formed new neural lobules. This regenerative process was accompanied by an increase in blood supply from the primary plexus of the median eminence to the neuro-intermediate lobe.Supported by grants from the Swedish Natural Science Research Council and the Royal Physiographic Society of LundThe authors are indebted to Mrs. Ingrid Hallberg and Mrs. Kirsten Thörneby for valuable technical assistance and skillful attention to the animals and to Miss Inger Norling for photographic aid  相似文献   

13.
In C. punctatus the median eminence includes the subterminal region of the hypothalamus and the anterior neurohypophysis. It is formed of ependymal, fibrous and reticular layers as in the tetrapods. Primary capillary plexus extends from the subterminal region to the extremity of the anterior neurohypophysis. Only few portal vessels from the hypothalamus enter in the pars distalis. All the components of pituitary including the pars intermedia are irrigated by the secondary plexus formed from the portal vessels emerging out of the anterior neurohypophysis. The neurosecretory axons and the ependymal cells are in close morphological contact with the primary plexus. Several axons have perivascular endings at the median eminence. Some axons were found to be only silver or aldehyde fuchsin positive whereas some others take up both. The silver positive axons were abundant in the pars distalis and the AF positive ones were more concentrated in the pars intermedia with greater accumulation of neurosecretory material.  相似文献   

14.
Summary The central catecholamine innervation of the pituitary neural lobe and pars intermedia of the rat have been identified ultrastructurally and their organization has been investigated in a combined fluorescence histochemical and electron microscopical study. The dopamine analogues, 5-hydroxydopamine and 6-hydroxydopamine, were used to label the catecholamine terminals, and to enable the direct correlation between the fluorescence microscopical and the electron microscopical pictures.The fibre type that was identified as catecholamine-containing was ultrastructurally chiefly characterized by dense-cored vesicles, 500–1200 Å in diameter, intermingled with varying numbers of small empty vesicles. 5-hydroxydopamine was selectively accumulated in these fibres and caused an increased electron density of the granular vesicles as well as of some small normally agranular vesicles, and systemically administered 6-hydroxydopamine caused a selective degeneration of these fibres, most prominently within the neural lobe. The dopaminergic terminals of the neural lobe showed frequent close contacts (80–120 Å), without real membrane thickenings, to neurosecretory axons and to pituicyte processes. It is suggested that these close contacts might signify a direct dopaminergic influence on the neurosecretory axons and/or on the pituicyte processes. The identified central catecholamine fibres were also found to make common synapse-like contacts on the pars intermedia cells, whereas the innervation by neurosecretory fibres was very rare. This suggests that the direct central nervous control of the rat pars intermedia is exerted by the catecholamine neurons. A very special feature of the catecholamine fibres in the pituitary is the occurrence of peculiar, large dopamine-filled droplet-like swellings. Electron microscopically, such large axonal swellings (more than 2 in diameter) were found to contain, in addition to the characteristic vesicles and organelles, strongly osmiophilic lamellated membrane complexes resembling myelin bodies and multivesicular bodies encircling disintegrated vesicles, suggesting that these droplet fibres represent dilated stumps of spontaneously degenerating dopaminergic axons. It is suggested that the dopaminergic neural lobe fibres are undergoing continuous reorganization through degeneration—regeneration cycles, a phenomenon previously suggested for the neurosecretory axons of the neural lobe.Supported by the Deutsche Forschungsgemeinschaft.Supported by Svenska Livförsäkringsbolags Nämnd för Medicinsk Forskning, by The Medical Faculty, University of Lund and by the Ford Foundation.  相似文献   

15.
Summary A rich system of monoamine-containing fibres is described in the neural lobe and pars intermedia of the pig and rat. a) A rich network of delicate varicose fibres is evenly distributed throughout the parenchyma of the neural lobe and surrounds the cells of the pars intermedia. b) Droplets or clusters of droplets are scattered throughout the neural lobe. Most of them probably constitute terminal swellings or end-apparatuses of smooth or varicose fibres. The number of droplets varies from animal to animal; they are found also in the pars intermedia. c) Coarse varicose fibres are mainly localized around larger vessels. At least some of these fibres are nerve fibres of sympathetic origin. A combination of fluorescence microscopy and aldehyde-fuchsin staining on the same sections demonstrated that the majority at least of these monoamine-containing structures were not identical with aldehyde-fuchsin positive neurosecretory fibres.This research was supported by a grant from the Swedish Medical Research Council (B68-12X-712-03B) and by the Faculty of Medicine, University of Lund.  相似文献   

16.
The presence and distribution of vimentin, a subunit of intermediate filaments, in the neural lobe and in the pars intermedia of the cat, rabbit and rat pituitary glands were investigated immunocytochemically. In the pars intermedia, our study revealed the presence of vimentin in glial-like cells located between glandular secretory cells of the three species and in the cells of the marginal layer of the cat and rat hypophyseal cleft. In the neural lobe of the cat and rabbit pituitary glands, there was a large amount of cell processes and immunoreactive pituicytes. In contrast, in the rat neural lobe, few pituicytes exhibited immunoreactivity, and these were located principally in the posterior region near the pituitary stalk. The significance of immunoreactive vimentin in these cells is discussed.  相似文献   

17.
Summary Immuno-enzyme cytochemical investigations showed that the whole amphibian pars intermedia of the hypophysis is innervated by an intercellular network of peptidergic varicose nerve fibres which contain mesotocin or (and) parts of the mesotocin molecule. The pars intermedia does not contain vasotocinergic fibres. The mesotocinergic fibres are branches of axons leaving the pituitary stalk and the neural lobe. In animals of which the hypothalamic magnocellular neurosecretory preoptic nuclei had been completely removed, the immuno-reactive mesotocinergic fibres of the pars intermedia had totally disappeared. From this result, it is concluded that the mesotocinergic fibres of the pars intermedia of the amphibian hypophysis are axons of neurosecretory perikarya located in the hypothalamic magnocellular neurosecretory preoptic nuclei.Dedicated to Professor Berta Scharrer on the accasion of her 70th birthdayThis investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

18.
Summary The ultrastructural localization of adenylate cyclase was accomplished cytochemically in the neurointermediate lobe of Sprague-Dawley rats. The main concentration of the reaction product was found on the plasmalemma of neurosecretory nerve fibers, their terminals and plasma membranes of pituicytes. Positive reaction for adenylate cyclase was found less regularly in endothelial cells, pericapillary spaces and processes of the basal lamina. The septum between the pars nervosa and the pars intermedia showed heavy deposits of the reaction product, especially around the neurosecretory nerve fibers but also around other types of nerve fibers. Reaction for adenylate cyclase was not seen in the cells of the pars intermedia. When the substrate (ATP) was omitted, no reaction product was found. These findings support the suggestion of an involvement of cyclic AMP in the release mechanism of neurohypophysial hormones from the neurosecretory nerve terminals, and possibly also their transfer into blood vessels and perivascular channels.Supported by M.R.C. (Canada)Carreer Investigator of the Medical Research Council of Canada  相似文献   

19.
Summary Using freeze-fracture techniques, we have investigated membrane specializations of the glia associated with the hypothalamo-neurohypophysial system of the rat. In the paraventricular (PVN) and supraoptic (SON) nuclei, astrocytes in areas of high neuronal density (i.e., magnocellular regions) display orthogonal arrays of 6–7 nm particles soley near gap junctions, while astrocytes in areas of lower neuronal density (i.e., parvocellular regions) contain additional arrays in membranes not displaying gap junctions. Arrays are especially numerous on astrocytic perivascular end-feet in both nuclei and in the laminations of the pial-glial limitans ventral to the SON. Ependymal cells near the PVN show arrays both on their lateral surfaces (displaying gap junctions) and on their apical surfaces (facing the CSF). Tight junctions are not noted on astrocytes or ependymal cells, but are noted on both the somas and myelin lamellae of oligodendroglia. Both of these latter membranes occasionally contain gap junctions as well; however, orthogonal arrays are never noted on oligodendroglia.The plasma membranes of pituicytes in the neurohypophysis display gap junctions, complex junctions, and tight junctions. Orthogonal arrays are noted near the first two of these, but not near the last. Arrays in the neural lobe appear most dense on membranes adjacent to subpial or perivascular spaces. Pituicyte membranes containing orthogonal arrays appear infrequently near the neural stalk, increasing towards the distal end of the neural lobe. The distribution of orthogonal arrays in this system, as well as in other systems in which they have been noted, suggests a polarization of membrane activity.  相似文献   

20.
The bilaterally paired optic lobe pacemakers of the cricket Gryllus bimaculatus are mutually coupled. In the present study we recorded the neural activity conveyed from the brain toward the optic lobe with a suction electrode to examine the coupling signals. The results demonstrated that the brain efferents to the optic lobe encode the circadian information: Both in constant light (LL) and constant darkness (DD), the neural activity of brain efferents showed a clear circadian rhythm with a nocturnal peak. Since the rhythm survived the severance of the contralateral optic nerve but disappeared when the contralateral optic lobe was removed, it is apparent that the rhythm originates from the contralateral optic lobe. The amplitude of the rhythm was greater in LL than in DD, suggesting that light affects the amplitude of the rhythm. This was confirmed by the fact that the light-induced response was under circadian control, being greater during the subjective night. These data suggest that the bilaterally paired optic lobe pacemakers exchange circadian information as well as light information. The data are also consistent with the results of previous behavioral experiment.Abbreviations DD constant darkness - LD light dark cycle - LL constant light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号