首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丹皮酚对肝癌MHCC97-H细胞PTEN、AKT表达的影响   总被引:2,自引:0,他引:2  
目的:探讨丹皮酚(Paeonol,Pae)在体外对人肝癌MHCC97-H细胞PTEN、AKT表达的影响。方法:体外培养人肝癌MHCC97-H细胞,MTT法检测丹皮酚对MHCC97-H细胞的增殖抑制作用,RT-PCR法检测PTEN、Akt1、Akt2mRNA表达,West- ern Blot法检测PTEN、p-AKT蛋白的表达。结果:丹皮酚呈时间剂量依赖性抑制人肝癌MHCC97-H细胞的增殖;肝癌MHCC97-H细胞低表达PTEN,高表达AKT,丹皮酚能显著上调MHCC97-H细胞PTEN表达,下调AKT表达。结论:丹皮酚可上调抑癌基因PTEN的表达,下调致癌基因AKT的表达,抑制MHCC97-H细胞的增殖。  相似文献   

2.
目的:探讨自分泌运动因子(AMF)在人肝细胞癌侵袭和转移中的作用。方法:人肝细胞系LO2和人肝细胞癌细胞株MHCC97-H作为实验材料,检测二者AMF的表达水平;设计并合成针对AMF基因序列的双链小干扰RNA转染高转移性人肝癌细胞株MHCC97-H,Western blot检测AMF基因的蛋白的表达水平;通过MTT实验检测转染后细胞的增殖力;通过体外Transwell小室对比沉默AMF基因前后的肝癌细胞的迁移力和侵袭力;最后用细胞悬液皮下接种小鼠,观察沉默AMF基因前后肝细胞的成瘤能力。结果:AMF在MHCC97-H的表达量较高;将双链小干扰RNA转入MHCC97-H后,AMF的表达显著降低(P0.05);沉默AMF基因序列后,MHCC97-H的增殖力、迁移力和侵袭力均有明显下降(P0.05);用细胞悬液皮下接种小鼠沉默AMF基因的MHCC97-H形成的肿瘤体积小于对照组(P0.05)。结论:AMF基因可调节肝癌细胞的迁移和侵袭。  相似文献   

3.
目的:探讨PARP-1抑制剂3-AB对肝癌细胞系MHCC97-H和SMMC7721及正常肝细胞系L02的增殖与凋亡的影响。方法:细胞增殖试验观察不同浓度3-AB对三种不同细胞系细胞的增殖作用。Annexin V荧光探针标记,流式细胞学检查观察不同浓度3-AB对不同细胞系细胞凋亡的影响。结果:当3-AB浓度分别为5 mM、10 mM与20 mM时,与对照组(0 mM)相比,在培养第6天时开始出现增殖明显减慢,出现统计学差异(p0.05),第九天差异明显(p0.05)。随着浓度增加,其对肿瘤细胞系MHCC97-H和SMMC7721细胞增殖的抑制程度增加,细胞数均逐渐减少;而同样浓度梯度3-AB对人类肝细胞系L02生长则无明显的抑制作用。进一步实验发现,当3-AB浓度为5mM、10 mM与20 mM时,均可诱导肝癌细胞株MHCC97-H和SMMC7721凋亡,与对照组(0 mM)比较均有统计学差异(p0.05),且细胞凋亡率与3-AB的药物浓度相关:浓度越高,凋亡越明显。而同等浓度3-AB对肝脏细胞系L02无明显的促进凋亡作用。结论:3-AB可以抑制肝癌肿瘤细胞的增殖,促进肿瘤细胞的凋亡,对正常肝脏细胞无明显毒害作用,具有治疗肝癌的的潜在应用价值。  相似文献   

4.
Ding SJ  Li Y  Shao XX  Zhou H  Zeng R  Tang ZY  Xia QC 《Proteomics》2004,4(4):982-994
To better understand the mechanism underlying hepatocellular carcinoma (HCC) metastasis and to search for potential markers for HCC prognosis, differential proteome analysis on two HCC cell strains with high and low metastatic potentials, MHCC97-H and MHCC97-L, was conducted using two-dimensional (2-D) gel electrophoresis followed by matrix-assisted laser desorption/time of flight mass spectrometry and liquid chromatography ion trap mass spectrometry. Image analysis of silver-stained 2-D gels revealed that 56 protein spots showed significant differential expression in MHCC97-H and MHCC97-L cells (Student's t-test, P < 0.05) and 4 protein spots were only detected in MHCC97-H cells. Fourteen protein spots were further identified using in-gel tryptic digestion, peptide mass fingerprinting and tandem mass spectrometry. The expressions of pyruvate kinase M2, ubiquitin carboxy-terminal hydrolase L1, laminin receptor 67 kDa, S100 calcium-binding protein A4, thioredoxin and cytokeratin 19 were elevated in MHCC97-H cells. However, manganese superoxide dismutase, calreticulin precursor, cathepsin D, lactate dehydrogenase B, non-metastatic cell protein 1, cofilin 1 and calumenin precursor were down-regulated in MHCC97-H cells. Intriguingly, most of these identified proteins have been reported to be associated with tumor metastasis. The functional implications of alterations in the levels of these proteins are discussed.  相似文献   

5.
目的:探讨Notch信号通路对肝癌细胞迁移能力及钙粘附蛋白E(E-cadherin)、环氧化酶-2(COX-2)表达的影响。方法:体外培养肝癌细胞系(SMMC-7721、MHCC97H)、正常非肿瘤肝细胞系(HL-7702),Transwell小室用于测定细胞的迁移侵袭能力,Western blot蛋白印迹法用于测定Notch1、E-cadherin、COX-2蛋白的表达水平,并采用DAPT阻断Notch信号通路,比较肝癌细胞系与正常非肿瘤肝细胞系的迁移侵袭能力及肝癌细胞中E-cadherin、COX-2蛋白的表达水平的改变。结果:SMMC-7721细胞、MHCC97H细胞的迁移能力强于HL-7702细胞,差异有统计学意义(P0.05);相比于HL-7702细胞,MHCC97H细胞、SMMC-7721细胞中的Notch1、COX-2表达水平均显著升高,E-cadherin的表达水平明显降低(P0.05);DAPT处理后,SMMC-7721细胞、MHCC97H细胞发生迁移的能力均弱于对照组,差异有统计意义(P0.05);DAPT处理后,SMMC-7721细胞、MHCC97H细胞内COX-2、Notch1的表达量明显降低,而E-cadherin的表达水平升高(P0.05)。结论:Notch信号通路参与肝癌细胞迁移过程,其机制可能与E-cadherin、COX-2的表达相关。  相似文献   

6.
Xu Z  Zhou X  Lu H  Wu N  Zhao H  Zhang L  Zhang W  Liang YL  Wang L  Liu Y  Yang P  Zha X 《Proteomics》2007,7(14):2358-2370
We present here an effective technique for the large-scale separation and identification of N-linked glycoproteins from Chang liver cells, the human normal liver cells. To enrich N-linked glycoproteins from the whole cells, a procedure containing the lysis of human liver cells, the solubilization of total proteins, lectin affinity chromatography including Concanavalin A and wheat germ agglutinin was established. Furthermore, captured N-linked glycoproteins were separated by 2-DE, and identified by MS and database searching. Finally, we found 63 N-glycoproteins in Chang liver cells. In addition, using the above method, we identified 7 remarkably up-regulated glycoproteins from MHCC97-H cells, highly metastatic liver cancer cells, compared to Chang liver cells. These up-regulated glycoproteins were associated with liver cancer and might be used as biomarkers for tumor diagnosis. Results showed that we established a high-throughput proteomic analysis for separating N-linked glycoproteins from human liver cells. This strategy greatly improved the glycoprotein analysis method associated with proteome-wide glycosylation changes related to liver cancer. Our work was part of the HUPO Human Liver Proteome Project (HLPP) studies and was supported by CHINA HUPO.  相似文献   

7.
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.  相似文献   

8.
目的:研究Bub1基因在肝癌中的表达以及对肝癌细胞系MHCC97-H增殖、周期和凋亡的影响。方法:利用RNA干扰技术下调肝癌细胞系MHCC97-H中Bub1的表达;qRT-PCR和Western Blot分别检测Bub1在mRNA和蛋白水平表达的变化;CCK-8实验检测肿瘤细胞增殖能力的改变;流式细胞术检测细胞周期和凋亡的变化。结果:qRT-PCR和Western Blot结果显示si-Bub1能够成功下调Bub1的表达;下调Bub1后肝癌MHCC97-H细胞的增殖能力下降(P0.05),细胞的凋亡比例升高(P0.05),细胞发生S期阻滞。结论:Bub1基因在肝癌中高表达,下调Bub1的表达后能够降低肝癌细胞的增殖能力,促进细胞凋亡,诱导细胞发生S期阻滞。  相似文献   

9.
肝癌转移相关的核心岩藻糖基化 蛋白质表达谱的研究   总被引:2,自引:2,他引:2  
通过比较研究不同转移潜能肝癌细胞系中核心岩藻糖基化蛋白质表达谱的差别,筛查与转移相关的重要糖蛋白 . 用 SDS- 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 、双向电泳 (2-DE) 和凝集素印迹技术联合基质辅助激光解吸飞行时间串联质谱 (MALDI-TOF-MS/MS) 分析,建立 3 种不同转移潜能人肝癌细胞系 Hep3B 、 MHCC97L 和 MHCC97H 的核心岩藻糖基化蛋白质表达图谱 . 比较研究发现,不同转移潜能肝癌细胞呈现不同的 SDS-PAGE/LCA 凝集素印迹图谱, MHCC-97H 和 MHCC-97L 在 35~45 ku 和 45~60 ku 间出现了 Hep3B 未见的条带 . 在核心岩藻糖基化蛋白质表达图谱中, Hep3B、 MHCC97L 和 MHCC97H 分别平均检测到 (55±7) 个蛋白质点 (n=3), (60±6) 个蛋白质点 (n=3), (61±4) 个蛋白质点 (n=3);以各自双向电泳图谱为参考胶,Hep3B、 MHCC97L 和 MHCC97H 分别与其匹配的平均匹配点数为 (25±3) 个 (n=3), (30±4) 个 (n=3), (28±3) 个 (n=3). 该图谱中,与 Hep3B 相比, MHCC97L 有 13 个点未匹配,其中 9 个点为 Hep3B( - )/MHCC97L(+); MHCC97H 有 9 个点未匹配,其中 6 个点为 Hep3B( - )/MHCC97H(+), MALDI-TOF-MS/MS 可鉴定出 Annexin1、 Keratin 8 等 12 种差异蛋白质 . 这些结果证实了不同转移潜能的肝癌细胞有明显的核心岩藻基化糖蛋白差异性表达 . 提示肝癌转移可能与这些差异糖蛋白及其核心岩藻糖基化有关 .  相似文献   

10.
微小RNA-125b(miR-125b)在许多恶性肿瘤的增殖、分化和凋亡等过程中具有很重要的作用,但miR-125b是否涉及肝癌的上皮 间质转换过程(EMT)还有待进一步研究。本研究通过构建过表达miR-125b的肝癌稳转细胞株,初步检测miR-125b对于肝癌的EMT过程和相关的TGF-β信号通路的影响,以及对于肝癌细胞凋亡的影响。以慢病毒载体pHRS-1cla EGFP 构建过表达miR-125b的载体质粒(pHRS-1cla-miR125b-CMV-EGFP),并对上述载体进行NheⅠ、XbaⅠ双酶切和测序鉴定,鉴定正确后,在293T细胞中进行慢病毒包装,浓缩病毒后,对MHCC97-H进行慢病毒感染并采用流式分选GFP阳性的细胞。实时定量PCR检测表明肝癌细胞稳转株MHCC97-H-PHRS-miR-125b-EGFP的miR-125b表达量是空载体转染组的6倍。Western印迹检测发现,与空载体对照组相比,MHCC97-H-PHRS-miR-125b-EGFP细胞中间质细胞标志α-SMA表达显著下调,上皮细胞标志E-cadherin表达显著上调,同样的,用Western印迹检测也发现MHCC97-H-PHRS-miR-125b-EGFP细胞中TGF-β信号通路关键下游分子Smad2和Smad4的表达显著下调,细胞凋亡检测结果表明,与对照组相比,过表达miR-125b的稳转株凋亡率增加到19.66%,加入TGF-β1后,过表达miR-125b的稳转株凋亡率进一步增加到74.7%。同样的,在体内治疗实验中,我们采用商品化的体内核酸转染试剂,在皮下肿瘤组织中过表达miR-125b mimics,结果表明miR-125b的过表达与肿瘤组织的凋亡成正相关性(r=0.83463,P < 0.01),且免疫组化结果也表明,miR-125b过表达后,E-cadherin表达显著上调,α-SMA及Smad2和Smad4的表达显著下调。上述结果表明,我们成功构建了过表达miR-125b的肝癌细胞稳转株,并成功建立了肿瘤组织中过表达miR-125b mimics的动物模型,在体内外均观察到过表达miR-125b后对肝癌细胞EMT过程的抑制作用和对细胞凋亡的促进作用。相关研究结果加深了我们对miR-125b在肝癌中抑制肝癌发展作用机制的理解,及其作为潜在的治疗肝癌的新靶点的重要性。  相似文献   

11.
To better understand the mechanism underlying the hepatocellular carcinoma (HCC) metastasis and to search potential markers for HCC prognosis, differential proteomic analysis on two well-established HCC cell strains with high and low metastatic potentials, MHCC97-H and MHCC97-L, was conducted using two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/time-of-flight mass spectrometry. Cytokeratin 19 (CK19) was identified and found to be overexpressed in MHCC97-H as compared with MHCC97-L. This result was further confirmed by two-dimensional Western blot analysis and immunofluorescence assay. Furthermore, one-dimensional Western blot analysis showed consistently increased CK19 expression in progressively more metastatic cells. Immunohistochemical study on 102 human HCC specimens revealed that more patients in the CK19-positive group had overt intrahepatic metastases (satellite nodules, p < 0.05; vascular tumor emboli, p < 0.001; tumor node metastatis staging, p < 0.001). CK19 fragment CYFRA 21-1 levels measured in sera from nude mice model of human HCC metastasis with radioimmunoassay increased in parallel with tumor progression and rose remarkably when pulmonary metastases occurred. The results demonstrated that overexpression of CK19 in HCC cells is related to metastatic behavior. Serum CK19 level might reflect the pathological progression in some HCC and may be a useful marker for predicting tumor metastasis and a therapeutic target for the treatment of HCC patients with metastases.  相似文献   

12.
Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.  相似文献   

13.
目的:分离肝癌细胞系MHCC97中肝癌干细胞并分析肝癌细胞高表达miR-221在肝癌干细胞和非干细胞亚群中的表达差异情况,探讨miR-221表达水平与肝癌干细胞分化之间的关系。方法:利用流式细胞荧光激活分选法从肝癌细胞系MHCC97中分选出肝癌干细胞(hepatocareinoma stem cells,HSCs)和非干细胞(non-hepatocareinoma stem cells,non-HSCs)两个亚群。采用实时荧光定量RT-PCR(Real-time RT-PCR)检测miR-221在两个不同肝癌细胞亚群中的表达。结果:HSC亚群肝癌细胞仅占细胞总体的2.59%;HSC亚群细胞中miR-221的表达明显高于non-HSC亚群(P〈0.01)。结论:miR-221在HSC亚群肝癌细胞中的明显高表达,提示miR-221可能在维持HSC亚群肝癌细胞的干细胞特性方面具有重要意义。通过调控肝癌干细胞中miR-221的表达,可以促进其分化成熟,从而为肝癌治疗提供新的思路。  相似文献   

14.
B—Myb是Myb家族的成员之一,在细胞周期和癌变过程中具有重要作用。但其在肺癌中的作用及其分子机制仍不清楚。为了研究B—Myb在肺癌中的作用,构建了B-Myb稳定过表达的H1299肺癌细胞株。流式细胞术和MTT检测的结果表明,B—Myb稳定过表达导致G1期细胞减少,S期细胞增加进而促进细胞增殖:克隆形成实验及Transwell的结果表明,B—Myb稳定过表达显著增强H1299细胞的克隆形成、侵袭及迁移能力。定量RT-PCR检测结果表明,B—Myb稳定过表达显著提高了细胞周期基因CCNA1的表达水平;对CD97和MTSS1等细胞运动相关下游基因的表达则无明显影响。该研究成功构建了B-Myb稳定过表达细胞株,发现了B-Myb过表达可促进肺癌细胞的增殖、侵袭迁移及克隆形成能力,为进一步研究奠定了基础。  相似文献   

15.
Ng KT  Guo DY  Cheng Q  Geng W  Ling CC  Li CX  Liu XB  Ma YY  Lo CM  Poon RT  Fan ST  Man K 《PloS one》2012,7(2):e31655

Background

Hepatocellular carcinoma (HCC) is highly malignant and metastatic. Currently, there is no effective chemotherapy for patients with advanced HCC leading to an urgent need to seek for novel therapeutic options. We aimed to investigate the effect of a garlic derivative, S-allylcysteine (SAC), on the proliferation and metastasis of HCC.

Methodology/Principal Findings

A series of in vitro experiments including MTT, colony-forming, wound-healing, invasion, apoptosis and cell cycle assays were performed to examine the anti-proliferative and anti-metastatic effects of SAC on a metastatic HCC cell line MHCC97L. The therapeutic values of SAC single and combined with cisplatin treatments were examined in an in vivo orthotopic xenograft liver tumor model. The result showed that the proliferation rate and colony-forming abilities of MHCC97L cells were suppressed by SAC together with significant suppression of the expressions of proliferation markers, Ki-67 and proliferating cell nuclear antigen (PCNA). Moreover, SAC hindered the migration and invasion of MHCC97L cells corresponding with up-regulation of E-cadherin and down-regulation of VEGF. Furthermore, SAC significantly induced apoptosis and necrosis of MHCC97L cells through suppressing Bcl-xL and Bcl-2 as well as activating caspase-3 and caspase-9. In addition, SAC could significantly induce the S phase arrest of MHCC97L cells together with down-regulation of cdc25c, cdc2 and cyclin B1. In vivo xenograft liver tumor model demonstrated that SAC single or combined with cisplatin treatment inhibited the progression and metastasis of HCC tumor.

Conclusions/Significance

Our data demonstrate the anti-proliferative and anti-metastatic effects of SAC on HCC cells and suggest that SAC may be a potential therapeutic agent for the treatment of HCC patients.  相似文献   

16.
Long X  Zhang J  Zhang Y  Yao J  Cai Z  Yang P 《Molecular bioSystems》2011,7(5):1728-1741
Human hepatocellular carcinoma (HCC) is one of the most malignant tumors, being particularly induced by unregulated growth and metastasis, and is a leading cause of death and major health problems in many countries. We report here the identification of 167 differentially expressed proteins between HCC (MHCC97-H) cells and Chang liver cells using enhanced nano-liquid chromatography/mass spectrometry (LC/MS). The most relevant pathways of differentially expressed proteins are involved in cytoskeleton organization, stress defense, and energy homeostasis etc. Moreover, of the identified proteins, there are 59 known or putative membrane-associated proteins with multitransmembrane domains confirmed by bioinformatic analysis. These proteins may be associated with cancer, reflecting tumorigenesis of HCC, and would be useful for the development of diagnostic and subsequently pharmaceutical targets of HCC. In addition, we identify a total of 41 proteins that are found to be up- or down-regulated following tanshinone IIA treatment for MHCC97H cells in a time-depended manner. Also, several proteins that are involved in actin cytoskeleton and stress resistance are mainly down-regulated, whereas proteins associated with cell redox homeostasis, mitochondrial, and microtubule-based movement are identified as mostly up-regulated after the treatment. Determination of functional roles of those differentially expressed proteins will enable further understanding of the mechanism of HCC tumorigenesis and exploration of new drugs for therapeutic intervention.  相似文献   

17.
This study investigates whether the anti‐metastasis effect of microRNA‐139 (miR‐139) on hepatocellular carcinoma (HCC) is mediated through regulating c‐fos expression. The expression levels of miR‐139 and c‐fos in human HCC cell sublines with high (MHCC97H) and low (MHCC97L) spontaneous metastatic potentials were quantified using QPCR or Western blot. miR‐139 mimics was transfected into MHCC97H cells to overexpress miR‐139, and miR‐139 inhibitor was transfected into MHCC97L cells to down‐express miR‐139. The effect of overexpression or down‐expression of miR‐139 on c‐fos expression of MHCC97H and MHCC97L cells was evaluated using QPCR and Western blot. The 3′ untranslated region segments of FOS containing the miR‐139 binding sites were amplified by PCR, and the luciferase activity in the transfected cells was assayed. In comparison with the expression level of miR‐139 in MHCC97L cells, the expression level in MHCC97H cells was significantly decreased, whereas c‐Fos was significantly up‐regulated in MHCC97H. The overexpression of miR‐139 significantly inhibited the expression of c‐fos in MHCC97H cells, and the down‐expression of miR‐139 significantly promoted the expression of c‐fos in MHCC97L cells. miR‐139 suppressed the luciferase activity of the pGL‐FOS by approximately 40% compared with the negative control. In vitro cell migration analysis demonstrated that depletion of c‐fos or overexpression of miR‐139 in MHCC97H cells reduced cell migration, whereas overexpression of c‐fos or depletion of miR‐139 in MHCC97L cells increased cell migration. Thus, we got the conclusion that miR‐139 expression is down‐regulated in human HCC cell sublines with high spontaneous metastatic potentials (MHCC97H). Derepression of c‐Fos caused by miR‐139 down‐regulation contributes to the metastasis of HCC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Nucleostemin (NS) is a GTP-binding protein that is predominantly expressed in embryonic and adult stem cells but not in terminally differentiated cells. NS plays an essential role in maintaining the continuous proliferation of stem cells and some types of cancer cells. However, the role of NS in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to clarify the role of NS in HCC. First, we demonstrated high expression of NS in most HCC cell lines and liver cancer tissues. NS knockdown induced a severe decline in cell viability of MHCC97H cells as detected by MTT and cell proliferation assays. Next, we used ultraviolet (UV) and serum starvation-induced apoptosis models to investigate whether NS suppression or up-regulation affects HCC cell apoptosis. After UV treatment or serum starvation, apoptosis was strongly enhanced in MHCC97H and Bel7402 cells transfected with small interfering RNA against NS, whereas NS overexpression inhibited UV- and serum-induced apoptosis of HCC cells. Furthermore, after UV irradiation, inhibition of NS increased the expression of pro-apoptosis protein caspase 3 and decreased the expression of anti-apoptosis protein Bcl-2. A caspase 3 inhibitor could obviously prevent NS knockdown-induced apoptosis. In conclusion, our study demonstrated overexpression of NS in most HCC tissues compared with their matched surrounding tissues, and silencing NS promoted UV- and serum starvation-induced apoptosis of MHCC97H and Bel7402 cells. Therefore, the NS gene might be a potential therapeutic target of HCC.  相似文献   

19.
We show for the first time that potent microRNA-433 (miR-433) inhibition of expression of the cAMP response element-binding protein CREB1 represses hepatocellular carcinoma (HCC) cell migration. We identified a miR-433 seed match region in human and mouse CREB1 3′-UTRs. Overexpression of miR-433 markedly decreased human CREB1 3′-UTR reporter activity, and the inhibitory effect of miR-433 was alleviated upon mutation of its binding site. Ectopic expression of miR-433 reduced CREB1 protein levels in a variety of human and mouse cancer cells, including HeLa, Hepa1, Huh7, and HepG2. Human CREB1 protein levels in highly invasive MHCC97H cells were diminished by expression of miR-433 but were induced by miR-433 antagomir (anti-miR-433). The expression of mouse CREB1 protein negatively correlated with miR-433 levels in nuclear receptor Shp−/− liver tissues and liver tumors compared with wild-type mice. miR-433 exhibited a significant repression of MHCC97H cell migration, which was reversed by anti-miR-433. Overexpressing miR-433 inhibited focus formation dramatically, demonstrating that miR-433 may exert a tumor suppressor function. Knockdown of CREB1 by siRNAs impeded MHCC97H cell migration and invasion and antagonized the effect of anti-miR-433. Interestingly, CREB1 siRNA decreased MHCC97H cell proliferation, which was not influenced by anti-miR-433. Overexpressing CREB1 decreased the inhibitory activity of miR-433. The CpG islands surrounding miR-433 were hypermethylated, and the DNA methylation agent 5′-aza-2′-deoxycytidine, but not the histone deacetylase inhibitor trichostatin A, drastically stimulated the expression of miR-433 and miR-127 in HCC cells. The latter is clustered with miR-433. The results reveal a critical role of miR-433 in mediating HCC cell migration via CREB1.  相似文献   

20.
Backgroundc-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.MethodsWe utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.ResultsWe have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that combination therapy with PHA665752 and Gefitinib (an EGFR inhibitor) significantly reduced cell viability and increased apoptosis compared with either PHA665752 or Gefitinib treatment alone.Conclusionc-Met inhibition monotherapy is not sufficient to eliminate c-Met+ HCC tumor growth. Inhibition of both c-Met and EGFR oncogenic pathways provides superior suppression of HCC tumor growth. Thus, combination of c-Met and EGFR inhibition may represent a superior therapeutic regimen for c-Met+ HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号