首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron cryomicroscopy is a high-resolution imaging technique that is particularly appropriate for the structural determination of large macromolecular assemblies, which are difficult to study by X-ray crystallography or NMR spectroscopy. For some biological molecules that form two-dimensional crystals, the application of electron cryomicroscopy and image reconstruction can help elucidate structures at atomic resolution. In instances where crystals cannot be formed, atomic-resolution information can be obtained by combining high-resolution structures of individual components determined by X-ray crystallography or NMR with image-derived reconstructions at moderate resolution. This can provide unique and crucial information on the mechanisms of these complexes. Finally, image reconstructions can be used to augment X-ray studies by providing initial models that facilitate phasing of crystals of large macromolecular machines such as ribosomes and viruses.  相似文献   

2.
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy—applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure–function relationships.  相似文献   

3.
Two recent studies by the Carlomagno/Pillai labs (Simon et?al., 2011) and the Patel group (Tian et?al., 2011) report the structures of complexes of Piwi PAZ domains with piRNA, utilizing two major methods in structural biology, NMR spectroscopy, and X-ray crystallography, and derive very similar structures with similar resolution.  相似文献   

4.
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X‐ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well‐suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR‐derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state‐of‐the‐art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.  相似文献   

5.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

6.
Liu HL  Hsu JP 《Proteomics》2005,5(8):2056-2068
The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.  相似文献   

7.
With the amount of genetic information available, a lot of attention has focused on systems biology, in particular biomolecular interactions. Considering the huge number of such interactions, and their often weak and transient nature, conventional experimental methods such as X-ray crystallography and NMR spectroscopy are not sufficient to gain structural insight into these. A wealth of biochemical and/or biophysical data can, however, readily be obtained for biomolecular complexes. Combining these data with docking (the process of modeling the 3D structure of a complex from its known constituents) should provide valuable structural information and complement the classical structural methods. In this review we discuss and illustrate the various sources of data that can be used to map interactions and their combination with docking methods to generate structural models of the complexes. Finally a perspective on the future of this kind of approach is given.  相似文献   

8.
9.
The plasma membrane functions as a semi-permeable barrier, defining the interior (or cytoplasm) of an individual cell. This highly dynamic and complex macromolecular assembly comprises predominantly lipids and proteins held together by entropic forces and provide the interface through which a cell interacts with its immediate environment. The extended sheet-like bilayer structure formed by the phospholipids is a highly adaptable platform whose structure and composition may be tuned to provide specialised functionality. Although a number of biophysical techniques including X-ray crystallography have been used to determine membrane protein structures, these methods are unable to replicate and accommodate the complexity and diversity of natural membranes. Solid state NMR (ssNMR) is a versatile method for structural biology and can be used to provide new insights into the structures of membrane components and their mutual interactions. The extensive variety of sample forms amenable for study by ssNMR, allows data to be collected from proteins in conditions that more faithfully resemble those of native environment, and therefore is much closer to a functional state.  相似文献   

10.
Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein–protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron paramagnetic resonance (EPR) and NMR spectroscopy. Close agreement was found between the conformation of the spin label observed in the crystal structure with interspin distances measured by EPR and signal broadening in NMR spectra, suggesting that the conformation seen in the crystal structure is also preferred in solution. In contrast, conformations of the spin label observed in crystal structures of T4 lysozyme are not in agreement with the paramagnetic relaxation enhancement observed for spin-labeled CylR2 in solution. Our data demonstrate that accurate positioning of the paramagnetic center is essential for high-resolution structure determination.  相似文献   

11.
There have been several studies suggesting that protein structures solved by NMR spectroscopy and X-ray crystallography show significant differences. To understand the origin of these differences, we assembled a database of high-quality protein structures solved by both methods. We also find significant differences between NMR and crystal structures—in the root-mean-square deviations of the C α atomic positions, identities of core amino acids, backbone, and side-chain dihedral angles, and packing fraction of core residues. In contrast to prior studies, we identify the physical basis for these differences by modeling protein cores as jammed packings of amino acid-shaped particles. We find that we can tune the jammed packing fraction by varying the degree of thermalization used to generate the packings. For an athermal protocol, we find that the average jammed packing fraction is identical to that observed in the cores of protein structures solved by X-ray crystallography. In contrast, highly thermalized packing-generation protocols yield jammed packing fractions that are even higher than those observed in NMR structures. These results indicate that thermalized systems can pack more densely than athermal systems, which suggests a physical basis for the structural differences between protein structures solved by NMR and X-ray crystallography.  相似文献   

12.
Small angle scattering can provide unique structural information on the shape, domain organisation, and interactions of biomacromolecules in solution. Small angle neutron scattering (SANS) combined with deuterium labelling makes it possible to define the positions of specific components within a complex while small angle X-ray scattering (SAXS) provides more precise data on the overall shape. Here I review four recent publications, three of which were presented at the Neutrons in Biology meeting at the STFC Rutherford Appleton Laboratory in July 2007, that utilise SANS, SAXS, and complementary techniques to define the solution structure of large multidomain proteins and macromolecular complexes. These four papers emphasise the critical importance of sample quality and characterisation as well as the important role played by complementary techniques in building structural models based on small angle scattering data. They show the ability of SANS and SAXS in determining solution structures provides an important complementary structural technique for large, flexible, and glycosylated proteins where high resolution structural techniques, such as crystallography and NMR, cannot be applied.  相似文献   

13.
In recent years, cryo-electron microscopy (cryo-EM) has established itself as a key method in structural biology, permitting the structural characterization of large biomolecular complexes in various functional states. The data obtained through single-particle cryo-EM has recently seen a leap in resolution thanks to landmark advances in experimental and computational techniques, resulting in sub-nanometer resolution structures being obtained routinely. The remaining gap between these data and revealing the mechanisms of molecular function can be closed through hybrid modeling tools that incorporate known atomic structures into the cryo-EM data. One such tool, molecular dynamics flexible fitting (MDFF), uses molecular dynamics simulations to combine structures from X-ray crystallography with cryo-EM density maps to derive atomic models of large biomolecular complexes. The structures furnished by MDFF can be used subsequently in computational investigations aimed at revealing the dynamics of the complexes under study. In the present work, recent applications of MDFF are presented, including the interpretation of cryo-EM data of the ribosome at different stages of translation and the structure of a membrane-curvature-inducing photosynthetic complex.  相似文献   

14.
NMR spectroscopy and X-ray crystallography in conjunction with extended X-ray absorption fine structure spectroscopy, have contributed to the elucidation of the structural biology of protein-mediated mechanisms of heavy metal homeostasis. Among the most striking aspects of these investigations are the remarkable similarity of metal-ion-transport and sequestering systems across different species, and the need to continue the research to confirm hypotheses for the molecular mechanisms of transfers of metal ions between proteins.  相似文献   

15.
Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders.  相似文献   

16.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

17.
The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. "Structural biology-grade" proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.  相似文献   

18.
The study of protein structure and function has evolved to become a leading discipline in the biophysical sciences. Although it is not yet possible to determine 3D protein structures from MS data alone, multiple MS-based techniques can be combined to obtain structural and functional data that are complementary to classical protein structure information obtained from NMR or X-ray crystallography. Monitoring gas-phase interactions of noncovalent complexes yields information on binding constants, complex stability, and the nature of interactions. Ion mobility MS and chemical crosslinking strategies can be applied to probe the architecture of macromolecular assemblies and protein-ligand complexes. MS analysis of hydrogen-deuterium exchange can be used to determine the localization of secondary structure elements, binding sites and conformational dynamics of proteins in solution. This minireview focuses first on new strategies that combine these techniques to gain insights into protein structure and function. Using one such strategy, we then demonstrate how a novel hydrogen-deuterium exchange microfluidics tool can be used online with an ESI mass spectrometer to monitor regional accessibility in a peptide, as exemplified with amyloid-β peptide 1-40.  相似文献   

19.
Structural crystallography and nuclear magnetic resonance (NMR) spectroscopy are the predominant techniques for understanding the biological world on a molecular level. Crystallography is constrained by the ability to form a crystal that diffracts well and NMR is constrained to smaller proteins. Although powerful techniques, they leave many soluble, purified structurally uncharacterized protein samples. Small angle X-ray scattering (SAXS) is a solution technique that provides data on the size and multiple conformations of a sample, and can be used to reconstruct a low-resolution molecular envelope of a macromolecule. In this study, SAXS has been used in a high-throughput manner on a subset of 28 proteins, where structural information is available from crystallographic and/or NMR techniques. These crystallographic and NMR structures were used to validate the accuracy of molecular envelopes reconstructed from SAXS data on a statistical level, to compare and highlight complementary structural information that SAXS provides, and to leverage biological information derived by crystallographers and spectroscopists from their structures. All the ab initio molecular envelopes calculated from the SAXS data agree well with the available structural information. SAXS is a powerful albeit low-resolution technique that can provide additional structural information in a high-throughput and complementary manner to improve the functional interpretation of high-resolution structures.  相似文献   

20.
Among all of the biological macromolecules, the functional versatility of RNAs is unique including encoding or transferring genetic information and performing catalysis. These biological functions are highly dependent upon RNA folding and structure. Since the discovery of catalytic RNAs in the early 1980s, a recent breakthrough came from the identification of a wealth of micro RNAs, small interfering RNAs and regulatory RNAs, all involved in modulation of gene expression. The structure of these novel RNAs, either free or in complex with specific ligands, can be analyzed using various experimental strategies, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance spectroscopy, structure-specific probes, with some that can be used in living cells, RNA engineering, thermal denaturation and mass spectrometry. Among these, X-ray crystallography has recently enabled determination of the structures of several large and complex RNAs, as well as of ribonucleoprotein complexes. The database of RNA structure has grown tremendously since the recent crystal structure analyses of the prokaryotic ribosome and its subunits. These methods are now widely applied to a variety of biologically relevant RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号