首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mammalian testis, meiotic and postmeiotic germ cell antigens are granted immune privilege. Both local immune suppression and specialized intercellular junctions between somatic Sertoli cells have been proposed to contribute to a highly restricted and effective blood-testis barrier (BTB) that helps maintain tolerance to germ cell antigens. Several studies have suggested that androgens play a role in immune suppression, although direct evidence for this is lacking. We previously reported that Sertoli cell-specific ablation of the androgen receptor (Ar) decreases expression of Cldn3, an androgen-regulated gene and component of Sertoli cell tight junctions, and increases the permeability of the BTB to biotin, a small-molecular-weight tracer. The physiological consequences of Sertoli cell-specific Ar (S-Ar) ablation on immune privilege are unknown. Here we show that in the testes of S-Ar mutant mice, the ultrastructure of Sertoli cell tight junctions is defective and testicular IgG levels are elevated. The interstitium of S-Ar mutant testes becomes populated with macrophages, neutrophils, plasma cells, and eosinophils, and serum samples of mutant mice contain antibodies against germ cell antigens. Together, these results suggest that Sertoli cell-specific deletion of the androgen receptor results in loss of testicular immune privilege. Suppressed levels of androgen signaling may be a contributing factor in idiopathic male infertility.  相似文献   

2.
Autoantigenic germ cells exist outside the blood testis barrier   总被引:4,自引:0,他引:4  
Preleptotene spermatocytes and spermatogonia are germ cells located outside the blood-testis barrier provided by the Sertoli cells. These cells have been found to express autoantigens accessible to circulating antibodies. Mice immunized with syngeneic testis with or without bacterial adjuvant had detectable IgG on cells at the periphery of seminiferous tubules. Sera from orchiectomized but not from testes-intact mice immunized with testis and adjuvants readily transferred similar IgG deposits to testes of normal recipients. When testis-specific antisera from orchiectomized mice and testis-intact mice were compared for their reactivity on prepuberal testicular cells, serum from orchiectomized donors had significantly higher reactivity. Ig was eluted from IgG-positive testes with acid buffer and was shown to be highly enriched in antibody to prepuberal testicular cells, confirming the Ag-specific nature of the IgG deposits. The testis IgG deposits reacted with antisera to IgG1 and IgG3 but not IgG2a or IgG2b. This finding can explain lack of association of C3 in the deposits. Only 30 to 40% of seminiferous tubules had IgG deposits and they coincided with stages 7 to 12 of the spermatogenic cycle. Thus, the expression of the autoantigens is stage specific. The in situ formation of immune complexes by circulating autoantibodies demonstrates conclusively that testis autoantigens are not completely sequestered, and the blood-testis barrier as an immunologic barrier is incomplete.  相似文献   

3.
Naturally occurring heavy metals and synthetic compounds are potentially harmful for testicular function but evidence linking heavy metal exposure to reduced semen parameters is inconclusive. Elucidation of the exact stage at which the toxicant interferes with spermatogenesis is difficult because the various germ cell stages may have different sensitivities to any given toxicant, germ cell development is influenced by supporting testicular somatic cells and the presence of inter-Sertoli cell tight junctions create a blood-testis barrier, sequestering meiotic and postmeiotic germ cells in a special microenvironment. Sharks such as Squalus acanthias provide a suitable model for studying aspects of vertebrate spermatogenosis because of their unique features: spermatogenesis takes place within spermatocysts and relies mainly on Sertoli cells for somatic cell support; spermatocysts are linearly arranged in a maturational order across the diameter of the elongated testis; spermatocysts containing germ cells at different stages of development are topographically separated, resulting in visible zonation in testicular cross sections. We have used the vital dye acridine orange and a novel fluorescence staining technique to study this model to determine (1) the efficacy of these methods in assays of apoptosis and blood-testis barrier function, (2) the sensitivity of the various spermatogonial generations in Squalus to cadmium (as an illustrative spermatotoxicant) and (3) the way that cadmium might affect more mature spermatogenic stages and other physiological processes in the testis. Our results show that cadmium targets early spermatogenic stages, where it specifically activates a cell death program in susceptible (mature) spermatogonial clones, and negatively affects blood-testis barrier function. Since other parameters are relatively unaffected by cadmium, the effects of this toxicant on apoptosis are presumably process-specific and not attributable to general toxicity.This study was mainly carried out during summer fellowships at the Mount Desert Island Biological Laboratory, Salsbury Cove, Maine, USA, and partly with financial support from the National Research Foundation of South Africa.  相似文献   

4.
Spermatocysts develop within the lumina of the lepidopteran testis. Each spermatocyst contains a clone of maturing germ cells which are separated from the fluid in the testicular lumen by a layer of somatic envelope cells. A blood-testis barrier is located at the level of the somatic envelope cells. We used macromolecular tracers horseradish peroxidase (applied before fixation) and ruthenium red (applied during fixation) with thin sections and freeze-fracture replicas to study the nature of this barrier in spermatocysts of the tobacco budworm, Heliothis virescens. Movement of the tracers into the spermatocysts was blocked by a structure at the outer edge of the septate junctions which join the spermatocyst envelope cells. In freeze-fracture replicas there was a P-face ridge or an E-face groove in this location. The ridge/groove appeared similar to a single-stranded vertebrate tight junction. Unlike tight junctions, however, there was no fusion or even close apposition of adjacent cell membranes in this location. We conclude, therefore, that a novel type of occluding junction was the barrier to paracellular movement of macromolecules in Heliothis spermatocysts.  相似文献   

5.
The mechanism by which the seminiferous epithelium limits the damaging effects of proteases that are released from degenerating late spermatids does not depend upon protease inhibitors in the systemic circulation since these proteins are excluded from the seminiferous tubule by the blood-testis barrier. The purpose of this study was to identify the major protease inhibitor of the testis and determine its cellular origin. Sertoli cells, the major epithelial component of the seminiferous epithelium, release a protease inhibitor, testicular alpha 2-macroglobulin, in vitro. Immunoprecipitation using [35S]methionine and a monospecific polyclonal antibody prepared against purified testicular alpha 2-macroglobulin establishes that this protein is actively synthesized and secreted by Sertoli cells. Measurements of immunoreactive protease inhibitors in tubular and rete testis fluids collected by micropuncture suggest that alpha 2-macroglobulin rather than alpha 1-antitrypsin is the major protease inhibitor in the seminiferous tubules in vivo. The ability of alpha 2-macroglobulin to inactivate proteases and growth factors such as TGF-beta by a common mechanism suggests that this protein may have a dual function in the testis.  相似文献   

6.
The rat mutant allele as is located on chromosome 12. Homozygous (as/as) males show arrested spermatogenesis, mainly at the pachytene spermatocyte stage. It is not clear whether this defective spermatogenesis is caused by a failure in a somatic cell component that supports spermatogenesis or in the germ cell itself. Spermatogonial transplantation was performed to identify the genetically defective site in the as/as testis. In experiment 1, germ cells collected from as/as testes were transplanted into the testes of immunodeficient mice and normal rats. In experiment 2, normal rat germ cells were transplanted into as/as testes. The results of experiment 1 showed arrest of spermatogenesis at the pachytene spermatocyte stage, accompanied by a characteristic morphological feature, i.e., the formation of inclusion-like bodies in the cytoplasm, in both rat and mouse recipients. These results revealed the intrinsic effect of the mutant gene(s) on germ cells. In experiment 2, no restoration of spermatogenesis was detected in the recipient testes despite thorough histological examination. These results suggest that defects in a somatic cell component in as/as testes prevent the donor germ cells from colonizing and regaining their spermatogenetic ability. When the seminiferous epithelium of the as/as testis was examined by electron microscopy, no morphological abnormalities, including the formation of ectoplasmic specializations between adjacent Sertoli cells, were observed in the somatic cell components. However, when cytochrome c was applied as a tracer material, it penetrated the tight junctions between the Sertoli cells, indicating dysfunction of the blood-testis barrier in the as/as testis. The lack of restoration of spermatogenesis in the as/as testis after transplantation of normal germ cells may have been caused by the unfavorable environment in the seminiferous epithelium resulting from the incomplete barrier system between adjoining Sertoli cells. The gene(s) at the as locus may have a role in both germ cell differentiation and the establishment of the blood-testis barrier.  相似文献   

7.
Summary Staining of testicular and epididymal tissues after intravenous, intraperitoneal or subcutaneous administration of a number of dyes was investigated in rats at different stages of postnatal development. After light green injections heavy staining of both testis and epididymis was visible to the naked eye in neonatal animals up to the age of 10 days, while in rats over 15 days old no appreciable staining of the testis could be seen, although the caput epididymis was strongly coloured. From 3–8 hours after subcutaneous acriflavine administration, the nuclei in the blood vessel walls of the testis, as well as the nuclei in the rete testis, tubuli efferentes and caput epididymis, fluoresced in all age groups. The nuclei of the interstitial and tubular cells were stained intensely until the age of 5 days. Thereafter the intensity gradually diminished until the age of 20 days, when no nuclear fluorescence was visible in the seminiferous tubules and even the interstitial nuclei fluoresced weakly or not at all.The histochemical alkaline phosphatase activity of the testicular capillaries was studied by Gomori's method, using fresh and postfixed cryostat sections from postnatal rat testes. The testicular capillaries exhibited appreciable activity at the age of 10 days.On the basis of the present and previous observations on the permeability of the testicular capillaries, the existence of a blood-testis barrier in the puberal and adult rat testis is suggested.Development of the blood-testis barrier and the alkaline phosphatase activity of the testicular capillaries are suggested to reflect general vascular maturation at the beginning of puberty in the rat.Supported by grants from Yrjö Jahnsson's Foundation and P. O. Klingendahl Foundation.  相似文献   

8.
Zika virus (ZIKV) poses a serious threat to global public health due to its close relationship with neurological and male reproductive damage. However, deficiency of human testicular samples hinders the in-depth research on ZIKV-induced male reproductive system injury. Organoids are relatively simple in vitro models, which could mimic the pathological changes of corresponding organs. In this study, we constructed a 3D testicular organoid model using primary testicular cells from adult BALB/c mice. Similar to the testis, this organoid system has a blood-testis barrier (BTB)-like structure and could synthesize testosterone. ZIKV tropism of testicular cells and ZIKV-induced pathological changes in testicular organoid was also similar to that in mammalian testis. Therefore, our results provide a simple and reproducible in vitro testicular model for the investigations of ZIKV-induced testicular injury.  相似文献   

9.
In urodeles which has testicular structure different from that in mammals, blood-testis barrier was reported to exist like in mammals. However, molecular and functional analyses of the components of the blood-testis barrier in urodeles have not been reported yet. Toward elucidation of the barrier functions and their molecular components in newt testis, we aimed to isolate occludin cDNAs and obtained two kinds of occludin partial cDNAs (occludin 1 and 2) encoding the putative second extracellular loop. Immunoblot and immunofluorescence studies using antibodies against peptides each corresponding to a part of the second extracellular loop of occludin 1 and 2, and those against beta-catenin and zonula occludens-1 (ZO-1) showed that occludin, as well as beta-catenin and ZO-1, was expressed not only in Sertoli cells but also in germ cells throughout all the stages from spermatogonia to elongate spermatids. Tracer experiments revealed a size-selective barrier which allows small molecules ( approximately 500 Da) to get into cysts through Sertoli cells' barrier, but not larger ones (>1.9 kDa) in the stages from spermatogonia to almost mature sperm. No occludin peptides corresponding to a part of the second extracellular loop destroyed the junctional barrier, while both the peptides and antibodies significantly inhibited reaggregation of the dissociated testicular cells which was to a large extent Ca(2+)-independent. These results indicate that the second extracellular loop of occludin is involved in cell adhesion rather than in size-selective barrier in newt testis, though the possibility cannot be excluded that the peptides were not long enough to inhibit the barrier function.  相似文献   

10.
Immune responses are suppressed in immunologically privileged sites, which may provide a unique opportunity to prolong allograft survival. However, it is unknown whether testicular immune privilege promotes transplantation tolerance. Mechanisms underlying immune privilege are also not well understood. Here we found that islet transplantation in the testis, an immunologically privileged site, generates much less memory CD8(+) T cells but induces more Ag-specific CD4(+)CD25(+) regulatory T cells than in a conventional site. These CD4(+)CD25(+) cells exhibited the suppression of alloimmune responses in vivo and in vitro. Despite the immune regulation, intratesticular islet allografts all were rejected within 42 days after transplantation although they survived longer than renal subcapsular islet allografts. However, blocking CD40/CD40L costimulation induced the tolerance of intratesticular, but not renal subcapsular, islet allografts. Tolerance to intratesticular islet allografts spread to skin allografts in the non-privileged sites. Either transfer of memory CD8(+) T cells or deletion of CD25(+) T cells in vivo broke islet allograft tolerance. Thus, transplantation tolerance requires both costimulatory blockade, which suppresses acute allograft rejection, and a favorable balance between memory and regulatory T cells that could favorably prevent late allograft failure. These findings reveal novel mechanisms of immune privilege and provide direct evidence that testicular immune privilege fosters the induction of transplantation tolerance to allografts in both immunologically privileged and non-privileged sites.  相似文献   

11.
12.
The testis is an organ with immune privilege. The comprehensive blood–testis barrier formed by Sertoli cells protects autoimmunogenic spermatozoa and spermatids from attack by the body’s immune system. The interleukin (IL)-6/IL-12 family cytokines IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/Epstein-Barr virus−induced gene 3 [EBI3]), and IL-35 (p35/EBI3) play critical roles in the regulation of various immune responses, but their roles in testicular immune privilege are not well understood. In the present study, we investigated whether these cytokines are expressed in the testes and whether they function in the testicular immune privilege by using mice deficient in their subunits. Expression of EBI3 was markedly increased at both mRNA and protein levels in the testes of 10- or 12-week-old wild-type mice as compared with levels in 2-week-old mice, whereas the mRNA expression of p40 was markedly decreased and that of p35 was conserved between these two groups. Lack of EBI3, p35, and IL-12 receptor β2 caused enhanced infiltration of lymphocytes into the testicular interstitium, with increased interferon-γ expression in the testes and autoantibody production against mainly acrosomal regions of spermatids. Spermatogenic disturbance was more frequently observed in the seminiferous tubules, especially when surrounded by infiltrating lymphocytes, of these deficient mice than in those of wild-type mice. In particular, p35-deficient mice showed the most severe spermatogenic disturbance. Immunohistochemical analyses revealed that endothelial cells and peritubular cells in the interstitium were highly positive for p35 at both ages, and CD163+ resident macrophages positive for p35 and EBI3, possibly producing IL-35, were also detected in the interstitium of 12-week-old mice but not those of 2-week-old mice. These results suggest that p35 helps in maintaining the testicular immune privilege, in part in an IL-35-dependent manner.  相似文献   

13.
Summary The blood-testis barrier and its changes following immunization to testis material, were investigated by light- and electron microscopy in a teleost fish, the Nile tilapia Oreochromis niloticus, using horseradish peroxidase and bovine serum albumin as tracers. In the normal testis, histochemistry using horseradish peroxidase revealed that a barrier composed of junctional complexes connecting adjacent Sertoli cells existed around the central lumina of the seminal lobules, and also around the germ-cell cysts containing spermatids at the middle or late phase of chromatin condensation. By contrast, bovine serum albumin was prevented from passing through the basement membrane and could not penetrate any of the spermatogenetic cysts, indicating that the basement membrane may be an ion-selective barrier. In tilapia immunized with allogeneic testis homogenate emulsified in Freund's complete adjuvant, bovine serum albumin could penetrate the spermatogenetic cysts, and horseradish peroxidase was able to pass through the intercellular spaces between Sertoli cells to the region nearer the seminal lobule lumen, due to the junctional complexes becoming loosened. The results suggest that the blood-testis barrier, both junctional complexes and the basement membrane, are broken down during immune responses.  相似文献   

14.
The production of high-quality ejaculates may represent significantcosts during male reproduction. Spermatozoa are perceived asnonself by the immune system and are exposed to immunologicalattacks in the male reproductive tract. Autoimmunity to spermatozoaresults in the production of antisperm antibodies that reducesperm quality and hence fertility. Thus, males are dependenton the testis being an immunoprivileged site to reduce immunologicalreactions against their own sperm, and immunoprivilege is obtainedby the blood-testis barrier and by hormonal immunosuppression.A meta-analysis on the effects of immunosuppressive corticosteroidtreatment of male infertility revealed that treatment reducedthe level of antisperm antibodies, improved sperm motility andsperm count, and increased conception rate. These results emphasizethe importance of immunosuppression and the associated pathogenicityfrom infectious organisms as important costs for the productionof high-quality ejaculates.  相似文献   

15.
Imatinib, the first generation of tyrosine kinase inhibitor, is used to treat and improve the prognosis of chronic myelogenous leukemia (CML). Clinical data suggest that imatinib could cross the blood-testis barrier and reduces the fertility of patients with CML-chronic phase. However, its exact molecular mechanism has not been fully elucidated. In this study, adult male Kunming mice were treated with different doses of imatinib for 8 weeks. The fertility was evaluated, and the sex hormone levels in the blood were detected by enzyme-linked immunosorbent assay. Histological changes were detected by hematoxylin and eosin staining. The concentration of imatinib in semen and blood was detected by liquid chromatography-mass spectrometry. The ultrastructure of blood-testis barrier and apoptotic bodies were observed by transmission electron microscope. The expression of blood-testis barrier function-regulating protein, Mfsd2a, and apoptosis-associated proteins in testis tissue was detected by immunohistochemistry and Western blot. The results indicated that the fertility of male mice was significantly decreased in a dose-dependent manner after imatinib treatment. Certain hormones in the serum were increased in imatinib treatment groups. Sperm morphology and testicular tissue showed various changes after imatinib treatment. The blood-testis barrier was destroyed and the concentration of imatinib in semen was similar to that in blood after imatinib treatment. Apoptosis was significantly increased in testis tissue after imatinib treatment. Collectively, these results suggest that imatinib can alter blood-testis barrier function, induce apoptosis of spermatogonia, and adversely affect fertility by reducing the number of spermatozoa, decreasing sperm motility and increasing the deformity rate.  相似文献   

16.
The ability of the gametes to escape detection by the immune system is vital to successful human reproduction. Furthermore, the observed capacity of the testis in some species to support tissue grafts without rejection (immunological privilege) indicates that spermatogenic cells are protected by local immunoregulatory mechanisms. One of these mechanisms involves targeting T cells for inactivation and destruction within the testicular environment. Although the fluids of the testis and ovary surrounding the developing gametes contain soluble factors that inhibit T cells, the identity of the molecule(s) responsible for this activity has been unknown. Using a specific T-cell proliferation assay to monitor bioactivity, these molecules were purified from bovine ovarian follicular fluid by methanol extraction and sequential reverse-phase HPLC (RP-HPLC). All purified active fractions coincided with the elution position on RP-HPLC of several small molecules ranging in size from 496 to 522 Da. The same molecules were localized to the immunosuppressive fractions of rat testicular interstitial fluid. The active molecules were identified, using capillary electrophoresis electrospray ionization mass spectroscopy, as lyso-glycerophosphocholines (lyso-GPCs), namely, 1-palmitoyl-sn-glycero-3-phosphocholine, 1-oleoyl-sn-glycero-3-phosphocholine, a 18:2a/lyso-GPC (putatively, 1-linoleoyl-sn-glycero-3-phosphocholine), and a 20:4a/lyso-GPC (putatively, 1-arachidonyl-sn-glycero-3-phosphocholine). Comparison of the bioactivity and mass spectroscopy profiles of two of the purified molecules with their synthetic standards confirmed the identification. These molecules inhibit T-cell proliferation in response to activation and induce apoptosis of these cells in a time- and dose-dependent manner. The emergence of gonadal lyso-GPCs as potential regulators of critical immune events opens up new avenues of inquiry into the origins of autoimmune infertility and more generally into mechanisms of peripheral immunoregulation and the development of novel immunosuppressives.  相似文献   

17.
The present study deals with immunohistochemical localization of S-100 protein in mouse, bank vole and pine vole testis and epididymis. S-100 protein immunoreactivity was observed in the endothelia of capillaries and lymphatic sinusoids of pine vole testis. A reaction to S-100 protein of the same intensity as that noted in the endothelia of testicular capillaries was found in myoid cells of pine vole and bank vole seminiferous tubules. Moreover, a positive reaction to S-100 protein was observed in bank vole and mouse Leydig cells. In the epididymis, a weaker reaction to S-100 occurred in smooth muscles of pine vole and mouse epididymal duct. Despite difficult interpretation of physiological role of S-100 protein we suggest that it may be a part of the blood-testis barrier. It may also participate in the processes of transcytosis and contractility; its cellular expression is regulated by local factors. However, location of S-100 is not specific to the representatives of the same order.  相似文献   

18.
19.
大鼠和小鼠睾丸表皮生长因子表达的免疫组织化学定位观察   总被引:10,自引:0,他引:10  
为了了解大鼠和小鼠睾丸是否产生EGF及其细胞定位,本实验用EGF单克隆抗体对大鼠和小鼠睾丸进行了免疫细胞化学定位研究,结果显示:(1)出生后,大鼠和小鼠睾丸即开始产生EGF,分泌活动主要位于睾丸间质细胞。(2)至性成熟期,少数精原细胞、精母细胞及个别圆形精子细胞和管周肌样细胞也产生EGF,使生精小管尤其是血睾屏障管腔小室侧的EGF分泌增加。(3)在本实验中,睾丸支持细胞未见明显EGF阳性染色。结果表明,大鼠和小鼠睾丸是可以产生EGF的,间质细胞是其主要的EGF分泌细胞。进入性成熟期后,少数精原细胞、精母细胞及个别圆形精子细胞和管周肌样细胞也产生EGF。大鼠和小鼠睾丸在发育过程中EGF分泌量呈上升趋势,至性成熟期达分泌高峰  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号