共查询到20条相似文献,搜索用时 8 毫秒
1.
《The Journal of cell biology》1996,132(1):21-33
Clathrin-coated vesicles transport selective integral membrane proteins from the plasma membrane to endosomes and from the TGN to endosomes. Recycling of proteins from endosomes to the plasma membrane occurs via unidentified vesicles. To study this pathway, we used a novel technique that allows for the immunoelectron microscopic examination of transferrin receptor-containing endosomes in nonsectioned cells. Endosomes were identified as separate discontinuous tubular-vesicular entities. Each endosome was decorated, mainly on the tubules, with many clathrin-coated buds. Endosome-associated clathrin-coated buds were discerned from plasma membrane-derived clathrin-coated vesicles by three criteria: size (60 nm and 100 nm, respectively), continuity with endosomes, and the lack of labeling for alpha-adaptin. They were also distinguished from TGN-derived clathrin-coated vesicles by their location at the periphery of the cell, size, and the lack of labeling for gamma-adaptin. In the presence of brefeldin A, a large continuous endosomal network was formed. Transferrin receptor recycling as well as the formation of clathrin-coated pits at endosomes was inhibited in the presence of brefeldin A. Together with the localization of transferrin receptors at endosome-associated buds, this indicates that a novel class of clathrin-coated vesicles serves an exit pathway from endosomes. The target organelles for endosome-derived clathrin-coated vesicles remain, however, to be identified. 相似文献
2.
Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes 总被引:7,自引:9,他引:7 下载免费PDF全文
After endocytosis, lysosomally targeted ligands pass through a series of endosomal compartments. The endocytic apparatus that accomplishes this passage may be considered to take one of two forms: (a) a system in which lysosomally targeted ligands pass through preexisting, long-lived early sorting endosomes and are then selectively transported to long-lived late endosomes in carrier vesicles, or (b) a system in which lysosomally targeted ligands are delivered to early sorting endosomes which themselves mature into late endosomes. We have previously shown that sorting endosomes in CHO cells fuse with newly formed endocytic vesicles (Dunn, K. W., T. E. McGraw, and F. R. Maxfield. 1989. J. Cell Biol. 109:3303-3314) and that previously endocytosed ligands lose their accessibility to fusion with a half-time of approximately 8 min (Salzman, N. H., and F. R. Maxfield. 1989. J. Cell Biol. 109:2097-2104). Here we have studied the properties of individual endosomes by digital image analysis to distinguish between the two mechanisms for entry of ligands into late endosomes. We incubated TRVb-1 cells (derived from CHO cells) with diO-LDL followed, after a variable chase, by diI-LDL, and measured the diO content of diI-containing endosomes. As the chase period was lengthened, an increasing percentage of the endosomes containing diO-LDL from the initial incubation had no detectable diI-LDL from the second incubation, but those endosomes that contained both probes showed no decrease in the amount of diO-LDL per endosomes. These results indicate that (a) a pulse of fluorescent LDL is retained by individual sorting endosomes, and (b) with time sorting endosomes lose the ability to fuse with primary endocytic vesicles. These data are inconsistent with a preexisting compartment model which predicts that the concentration of ligand in sorting endosomes will decline during a chase interval, but that the ability of the stable sorting endosome to receive newly endocytosed ligands will remain high. These data are consistent with a maturation mechanism in which the sorting endosome retains and accumulates lysosomally directed ligands until it loses its ability to fuse with newly formed endocytic vesicles and matures into a late endosome. We also find that, as expected according to the maturation model, new sorting endosomes are increasingly labeled during the chase period indicating that new sorting endosomes are continuously formed to replace those that have matured into late endosomes.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
3.
Westerink RH de Groot A Vijverberg HP 《Biochemical and biophysical research communications》2000,270(2):625-630
Vesicular catecholamine release has been measured amperometrically from undifferentiated rat PC12 cells using carbon fiber microelectrodes. During superfusion with high K(+) saline, vesicular release was detected from approximately 50% of 200 cells investigated. On repeated stimulation the releasable pool of vesicles is rapidly depleted, while vesicle contents remains constant. Vesicular catecholamine release is not restored within 1 h after depletion of the releasable pool. Although the distribution of the cube root of vesicle contents of many cells is apparently Gaussian, maximum likelihood analysis of single cell data demonstrates double Gaussian distributions with median vesicle contents of 141 and 293 zeptomole. It is concluded that the releasable pool of vesicles in PC12 cells is heterogeneous. In the presence of l-DOPA mean vesicle contents increases, but cessation of release cannot be prevented, indicating that the number of releasable vesicles in PC12 cells is limited by a slow rate of vesicle cycling. 相似文献
4.
5.
The polymeric immunoglobulin receptor accumulates in specialized endosomes but not synaptic vesicles within the neurites of transfected neuroendocrine PC12 cells 总被引:6,自引:4,他引:2 下载免费PDF全文
《The Journal of cell biology》1994,127(6):1603-1616
We have expressed in neuroendocrine PC12 cells the polymeric immunoglobulin receptor (pIgR), which is normally targeted from the basolateral to the apical surface of epithelial cells. In the presence of nerve growth factor, PC12 cells extend neurites which contain synaptic vesicle-like structures and regulated secretory granules. By immunofluorescence microscopy, pIgR, like the synaptic vesicle protein synaptophysin, accumulates in both the cell body and the neurites. On the other hand, the transferrin receptor, which normally recycles at the basolateral surface in epithelial cells, and the cation-independent mannose 6-phosphate receptor, a marker of late endosomes, are largely restricted to the cell body. pIgR internalizes ligand into endosomes within the cell body and the neurites, while uptake of ligand by the low density lipoprotein receptor occurs primarily into endosomes within the cell body. We conclude that transport of membrane proteins to PC12 neurites as well as to specialized endosomes within these processes is selective and appears to be governed by similar mechanisms that dictate sorting in epithelial cells. Additionally, two types of endosomes can be identified in polarized PC12 cells by the differential uptake of ligand, a housekeeping type in the cell bodies and a specialized endosome in the neurites. Recent findings suggest that specialized axonal endosomes in neurons are likely to give rise to synaptic vesicles (Mundigl, O., M. Matteoli, L. Daniell, A. Thomas-Reetz, A. Metcalf, R. Jahn, and P. De Camilli. 1993. J. Cell Biol. 122:1207- 1221). Although pIgR reaches the specialized endosomes in the neurites of PC12 cells, we find by subcellular fractionation that under a variety of conditions it is efficiently excluded from synaptic vesicle- like structures as well as from secretory granules. 相似文献
6.
Fukuda M Kanno E Ogata Y Saegusa C Kim T Loh YP Yamamoto A 《The Journal of biological chemistry》2003,278(5):3220-3226
Synaptotagmin IV (Syt IV) is a fourth member of the Syt family and has been shown to regulate some forms of memory and learning by analysis of Syt IV null mutant mice (Ferguson, G. D., Anagnostaras, S. G., Silva, A. J., and Herschman, H. R. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5598-5603). However, the involvement of Syt IV protein in vesicular trafficking and even its localization in secretory vesicles are still matters of controversy. Here we present several lines of evidence showing that the Syt IV protein in PC12 cells is normally localized in the Golgi or immature vesicles at the cell periphery and is sorted to fusion-competent mature dense-core vesicles in response to short nerve growth factor (NGF) stimulation. (i) In undifferentiated PC12 cells, Syt IV protein is mainly localized in the Golgi and small amounts are also present at the cell periphery, but according to the results of an immunocytochemical analysis, they do not colocalize with conventional secretory vesicle markers (Syt I, Syt IX, Rab3A, Rab27A, vesicle-associated membrane protein 2, and synaptophysin) at all. By contrast, limited colocalization of Syt IV protein with dense-core vesicle markers is found in the distal parts of the neurites of NGF-differentiated PC12 cells. (ii) Immunoelectron microscopy with highly specific anti-Syt IV antibody revealed that the Syt IV protein in undifferentiated PC12 cells is mainly present on the Golgi membranes and immature secretory vesicles, whereas after NGF stimulation Syt IV protein is also present on the mature dense-core vesicles. (iii) An N-terminal antibody-uptake experiment indicated that Syt IV-containing vesicles in the neurites of NGF-differentiated PC12 cells undergo Ca(2+)-dependent exocytosis, whereas no uptake of the anti-Syt IV-N antibody was observed in undifferentiated PC12 cells. Our results suggest that Syt IV is a stimulus (e.g. NGF)-dependent regulator for exocytosis of dense-core vesicles. 相似文献
7.
Fractionation of synaptophysin-containing vesicles from rat brain and cultured PC12 pheochromocytoma cells 总被引:21,自引:0,他引:21
Synaptophysin is a transmembrane glycoprotein of neuroendocrine vesicles. Its content and distribution in subcellular fractions from cultured PC12 cells, rat brain and bovine adrenal medulla were determined by a sensitive dot immunoassay. Synaptophysin-containing fractions appeared as monodispersed populations similar to synaptic vesicles in density and size distribution. Membranes from synaptic vesicles contained approximately 100-times more synaptophysin than chromaffin granules. In conclusion, synaptophysin is located almost exclusively in vesicles of brain and PC12 cells which are distinct from dense core granules. 相似文献
8.
Han L Suda M Tsuzuki K Wang R Ohe Y Hirai H Watanabe T Takeuchi T Hosaka M 《Molecular endocrinology (Baltimore, Md.)》2008,22(8):1935-1949
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules. 相似文献
9.
Considerable attention has been focused on the therapeutic role of lithium (Li) in bipolar disorders. Although no consensus has emerged, Li presumably influences the behavior of neurons that regulate mood and behavior. Using PC12 cells to study cellular and molecular actions of Li, we previously reported that Li modulates the expression of proteins associated with large dense-core vesicles (LDCVs; organelles typically containing monoamines, neuropeptides and other cargo proteins). The current investigation indicates that this enhanced expression of LDCV proteins correlates with an altered secretory phenotype in Li-treated cells. Immunoblotting detects significant increases in the cellular content and secretion of the LDCV cargo proteins chromogranin B and secretogranin II. Amperometry reveals an increase of spike number elicited by K+-depolarization of Li-treated cells but no change of spike amplitude or kinetics. Electron microscopy reveals no significant change in LDCV number per unit area in Li-treated cells. However, there is a significant increase (about 15%) in the diameter of LDCVs after Li. Thus, Li induces changes in the properties of LDCVs that culminate in augmented regulated secretion in nerve growth factor-differentiated PC12 cells. These results extend our understanding of Li-dependent changes of cellular function that may be germane to the therapeutic action of Li. 相似文献
10.
Falguières T Luyet PP Bissig C Scott CC Velluz MC Gruenberg J 《Molecular biology of the cell》2008,19(11):4942-4955
Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively. 相似文献
11.
Synaptic vesicles are released from membranes during incubation at 37°C in the presence of ATP (adenosine triphosphate). The donor membranes are a rapidly sedimenting fraction derived from the neuroendocrine cell line PC12 (pheochromocytoma 12). These starting membranes contain the synaptic vesicle proteins, synaptophysin and SV2, and the endosomal markers transferrin receptor and cation-independent MPR (mannose 6-phosphate receptor). Incubating the membranes in vitro increased the amount of organelles that migrate as synaptic vesicles in velocity sedimentation gradients. The synaptic vesicle fractions that contain both synaptophysin and SV2 do not contain endosomal markers. A synaptic vesicle increase in vitro is time-, cytosol-, ATP- and temperature-dependent and is inhibited by NEM (N-ethylmaleimide), BFA (brefeldin A) and aluminum fluoride, but not GTPS (guanosine-5-O-C3-thiotriphosphate). The production of synaptic vesicles under these conditions is unlike the de novo generation of vesicles from endosomes (1). Incubation in vitro under the conditions described here may allow the final stages of synaptic vesicle formation, uncoating or undocking, to occur but not the initiation of formation de novo. 相似文献
12.
A 6M urea-insoluble form of tyrosine hydroxylase (THi) was detected in PC12 pheochromocytoma cells by western blotting immunodetection methods, and the characteristics and mechanisms of formation of this insoluble species were investigated. THi accounts for about 4% of the immunodetectable tyrosine hydroxylase in exponentially dividing pheochromocytoma cells. It is unlikely that a subpopulation of dead or dying cells is the source of THi since essentially no changes in THi levels were detected when cell death was intentionally increased. To measure the kinetics of formation of cellular THi, exponentially dividing cells were metabolically labeled first with [3H]leucine and then with [14C]leucine, and though both3H and14C were incorporated into soluble tyrosine hydroxylase, the near absence of14C in THi demonstrated that a lag period of at least a day exists between biosynthesis of tyrosine hydroxylase and the accumulation of measurable THi. The cellular accumulation of THi can evidently be regulated by the cell, since upon nerve growth factor (NGF) treatment of cells the total content of tyrosine hydroxylase increased and the content of THi decreased to yield, overall, a fivefold lower proportion of THi after 4 days. A large increase in urea-insoluble enzyme was found upon sublethal exposure of cells to ferrous ion and hydrogen peroxide, indicating that oxidative damage via metal-ion-catalyzed formation of hydroxide free radical can yield an enzyme that is similar in its insolubility to THi.Abbreviations DOPA
3,4-dihydroxyphenylalanine
- NGF
nerve growth factor
- THi
denaturant-insoluble tyrosine hydroxylase
- EDTA
ethylene diamine tetraacetic acid
- HEPES
N-2-hydroxyethylpiperazine-N-ethanesulfonic acid
- SDS
sodium dodecyl sulfate
- Tris
Tris(hydroxymethyl)-aminomethane
- LLPM
low-leucine pulse medium
- WS
water-solubilized protein
- US
6 M urea-solubilized protein
- UI
6 M urea-insoluble protein 相似文献
13.
Exocytic fusion in neuroendocrine cells does not always result in complete release of the peptide contents from dense core vesicles (DCVs). In this study, we use fluorescence imaging and immunoelectron microscopy to examine the retention, endocytosis and recycling of chromogranin B in DCVs of NGF-treated PC12 cells. Our results indicate that DCVs retained and retrieved an intact core that was available for subsequent exocytic release. The endocytic process was inhibited by cyclosporine A or by substitution of extracellular Ca(2+) with Ba(2+) and the total recycling time was less than 5 min. 相似文献
14.
Exclusion of golgi residents from transport vesicles budding from Golgi cisternae in intact cells 下载免费PDF全文
Orci L Amherdt M Ravazzola M Perrelet A Rothman JE 《The Journal of cell biology》2000,150(6):1263-1270
A central feature of cisternal progression/maturation models for anterograde transport across the Golgi stack is the requirement that the entire population of steady-state residents of this organelle be continuously transported backward to earlier cisternae to avoid loss of these residents as the membrane of the oldest (trans-most) cisterna departs the stack. For this to occur, resident proteins must be packaged into retrograde-directed transport vesicles, and to occur at the rate of anterograde transport, resident proteins must be present in vesicles at a higher concentration than in cisternal membranes. We have tested this prediction by localizing two steady-state residents of medial Golgi cisternae (mannosidase II and N-acetylglucosaminyl transferase I) at the electron microscopic level in intact cells. In both cases, these abundant cisternal constituents were strongly excluded from buds and vesicles. This result suggests that cisternal progression takes place substantially more slowly than most protein transport and therefore is unlikely to be the predominant mechanism of anterograde movement. 相似文献
15.
Summary In an investigation of the role of glucanases in modifying yeast cell walls at the location of new buds, vesicles derived from the endoplasmic reticulum, which are secreted locally into the cell wall of growing buds, and may be involved in the secretion of glucanases, have been isolated.In yeast, exo--1,3-glucanase is present both extra- and intracellularly. Exponentially growing cells contain at least 11% of the enzyme activity intracellularly (within the plasmalemma). Most of this intracellular glucanase is sedimentable. Of the three classes of subcellular particles that contain glucanase, one is almost completely absent from stationary phase cells and largely absent from cells of the late budding phase of the cell cycle. These particles were isolated from budding cells by combined differential and density gradient centrifugation. They contain exo- and endo--1,3-glucanases, mannan and protein. The isolate consists mainly of membrane-bounded vesicles with diameters corresponding to those of the secretory vesicles observed in situ. It is concluded that these particles are identical with the vesicles derived from the endoplasmic reticulum. 相似文献
16.
JiangLi Li Yang Xiao Wei Zhou ZhengXing Wu RongYing Zhang Tao Xu 《中国科学:生命科学英文版》2009,52(12):1156-1163
Synaptotagmin VII (Syt VII), which has a higher Ca2+ affinity and slower disassembly kinetics with lipid than Syt I and Syt IX, was regarded as being uninvolved in synaptic vesicle (SV) exocytosis but instead possibly as a calcium sensor for the slower kinetic phase of dense core vesicles (DCVs) release. By using high temporal resolution capacitance and amperometry measurements, it was demonstrated that the knockdown of endogenous Syt VII attenuated the fusion of DCV with the plasma membrane, reduced the amplitude of the exocytotic burst of the Ca2+-triggered DCV release without affecting the slope of the sustained component, and blocked the fusion pore expansion. This suggests that Syt VII is the Ca2+ sensor of DCV fusion machinery and is an essential factor for the establishment and maintenance of the pool size of releasable DCVs in PC12 cells. 相似文献
17.
Zhang Z Wu Y Wang Z Dunning FM Rehfuss J Ramanan D Chapman ER Jackson MB 《Molecular biology of the cell》2011,22(13):2324-2336
Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca(2+) sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca(2+) sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell. 相似文献
18.
Theos AC Truschel ST Tenza D Hurbain I Harper DC Berson JF Thomas PC Raposo G Marks MS 《Developmental cell》2006,10(3):343-354
Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as receptor downregulation, viral budding, and biogenesis of lysosome-related organelles such as melanosomes. We show that the melanosomal protein Pmel17 is sorted into ILVs by a mechanism that is dependent upon lumenal determinants and conserved in non-pigment cells. Pmel17 targeting to ILVs does not require its native cytoplasmic domain or cytoplasmic residues targeted by ubiquitylation and, unlike sorting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal subdomains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal subdomain and proteolytic processing that itself requires ILV localization. These results establish an Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation. 相似文献
19.
《The Journal of cell biology》1994,127(5):1419-1433
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs. 相似文献