首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calls and displays elicited by predators usually function as alarms or to inform predators of their detection. However, predator encounters may afford some individuals the opportunity to demonstrate quality or signal their availability. Here, I report on a class of vocal signals produced in predator-elicited displays that share many characteristics with sexually selected song. White-throated magpie-jays ( Calocitta formosa ) display at low-threat predators while producing 'loud display calls' (LDCs). I use this term because the calls occur primarily in two display contexts (see below) though occasionally in other contexts as well. Such calls and displays are primarily produced by males, and also occur in one other context, at dawn. Playback experiments showed that despite being elicited by predators, males were more likely than females to respond to LDCs, and more likely to respond when their mate was fertile. Over 134 different call types were produced in over 200 displays by 34 males; the largest minimum repertoire size was 67. Presentations of taxidermic raptor mounts elicited some LDCs, but fewer calls and lower diversity than at dawn or in predator approach displays. The male bias and high diversity suggest that LDCs are an outcome of intersexual selection, while their elicitation by predators suggests an alarm function. I propose that male magpie-jays use predator encounters as opportunities to advertise their presence and availability as mates; they use LDCs as songs. Such a communication system seems to have been favored by the unusual social system of magpie-jays, in which female groups defend territories and males have little opportunity to defend resources for mate attraction, forcing them to advertise when females are paying the most attention, during predator encounters.  相似文献   

2.

The response of prey species to predator scent has been investigated in many mammalian species; however, there is little information about the responses of European wild rabbits at the population level. Therefore, we conducted a simple experiment to investigate the behavioural response of a rabbit population to native predator cues in the wild. We compared the response to the scent of a predator (red fox) in a wild rabbit population bred in semi-natural conditions and naïve to terrestrial predators with the response of a population in a similar environment where terrestrial predators were present. The response to predators was based on rabbit abundance, inferred from pellet counts and measured by the defecation rate per day (DRD). Our results indicate that rabbits responded to the odour of fox faeces in the treatment warrens, resulting in a lower DRD. The main anti-predator behaviour observed was spatial avoidance (warren abandonment), which seemed to be more accentuated for rabbits who had not previously had contact with foxes in the plot where terrestrial predators were excluded. In both the fenced and the unfenced plot, the differences in the effect of the predator odour between the control and treatment warrens disappeared after cessation of treatment, suggesting a flexible and adaptive behaviour of rabbits to predator cues.

  相似文献   

3.
Many vertebrate species show display behaviors when predators are in their vicinity. Some of these displays may inform the predator of the improbability of capturing the prey (i.e., pursuit-deterrent displays) and are potentially advantageous to both predator and prey. Here we present data on a tail display performed by Gonatodes albogularis, a diurnal tropical gecko. We performed transect surveys in three habitats near Bogotá in Colombia. Geckos detected during transects were approached by the observer in a standardized way, and details of their tail-waving displays were recorded. In control recordings animals were watched from a distant site without approaching them. Results showed sexual differences in tail-waving display: when approached by the observer, males performed this behavior more frequently than females. We found no significant differences between males and females in flight-initiation distances and height above the substratum when they were initially located. Results also showed that males displayed more frequently when approached than when the simulated predator remained stationary. We interpret these results as evidence that the display functions as a pursuit-deterrent signal to potential predators. However, as some tail displays were performed in the presence of conspecifics, the display may also have a social function.  相似文献   

4.
Performing correct anti‐predator behaviour is crucial for prey to survive. But, are such abilities lost in species or populations living in predator‐free environments? How individuals respond to the loss of predators has been shown to depend on factors such as the degree to which anti‐predator behaviour relies on experience, the type of cues evoking the behaviour, the cost of expressing the behaviour and the number of generations under which relaxed selection has taken place. Here we investigated whether captive‐born populations of meerkats (Suricata suricatta) used the same repertoire of alarm calls previously documented in wild populations and whether captive animals, as wild ones, could recognize potential predators through olfactory cues. We found that all alarm calls that have been documented in the wild also occurred in captivity and were given in broadly similar contexts. Furthermore, without prior experience of odours from predators, captive meerkats seemed to distinguish between faeces of potential predators (carnivores) and non‐predators (herbivores). Despite slight structural differences, the alarm calls given in response to the faeces largely resembled those recorded in similar contexts in the wild. These results from captive populations suggest that direct, physical interaction with predators is not necessary for meerkats to perform correct anti‐predator behaviour in terms of alarm‐call usage and olfactory predator recognition. Such behaviour may have been retained in captivity because relatively little experience seems necessary for correct performance in the wild and/or because of the recency of relaxed selection on these populations.  相似文献   

5.
In group‐living mammals, the major functions of vigilance are to detect the presence of predators and to monitor the movements of conspecific competitors, i.e. of potential opponents in agonistic encounters. The minimum distance to such a conspecific competitor that an animal considers safe is usually lower than to a predator, whereas the frequency of encounters with conspecifics is higher. Therefore, the acquisition of information about a predator or about a conspecific could lead to the existence of at least two different modes of vigilance behaviour. The aim of the present study was to describe and compare different forms of vigilance behaviour that European rabbits, Oryctolagus cuniculus, display in anti‐predator and social contexts. We conducted an observational study on individually marked animals from a field enclosure population. We recorded social interactions of the animals, the presence of aerial predators (common buzzard Buteo buteo), and the vigilance behaviour of the rabbits. We distinguished between two forms of vigilance of different intensity: subtle and overt. The frequencies of both forms of vigilance displayed by the rabbits differed significantly in occurrence, duration, and distribution over time. Females and males showed higher frequencies of overt but not subtle vigilance when buzzards were present. In contrast, the presence of conspecifics in close proximity affected the display of subtle but not overt vigilance: males increased the frequency of subtle vigilance when other males were close. Females increased subtle vigilance in proximity of males and females; however, this effect was only apparent in females with a more unstable social situation. In conclusion, European rabbits differentially increased two different forms of vigilance behaviour in social and anti‐predator contexts.  相似文献   

6.
Defence against predators is an important component of fitness in wild birds but the first step of defence, predator recognition, is not well understood. Anti‐predator behaviour may innate, in which case the individual responds without prior contact with that predator, and/or there may be a learned component that develops only after direct experience. In the wild, the development of anti‐predator behaviour is studied by exposing naive individuals to novel predators. I studied responses of 71 naive and experienced northern flickers Colaptes auratus, to a novel nest predator and competitor, the European starling Sturnus vulgaris that was introduced to North America. Naive individuals responded more intensely to the model starling than to the control model suggesting an innate component to recognition. However, there was also a learned component to defence because flickers nesting near to starlings reacted more aggressively than naive individuals far from starlings. Consistent with theory on life histories and optimal defence levels, no significant differences in aggression were found between the sexes or between age classes. Selection should favour more intense, and possibly innate, defence against the introduced starling. Variation in responses of naive individuals suggests that there may already be some alleles in the population associated with higher defence, but that these may not be uniform within the population.  相似文献   

7.
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been 'trained' by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.  相似文献   

8.
Predation shortly after release is the main source of mortality among hatchery‐reared fish used to restore or enhance endangered salmonid populations. We found, that hatchery‐reared salmonid young originating from endangered stocks have weak innate responses to their natural fish predators. The ability to avoid predation in fish can be improved through social learning from experienced to naïve individuals. Huge benefits would be achieved, if social learning processes could be successfully applied on a large scale to enhance viability of hatchery fish prior to release into the wild. By using model predators together with chemical cues from real predators we tested if social learning could be used to train hatchery‐reared salmonid young to avoid fish predators. As there are clear differences in social behaviour among the salmonid species, we first examined whether these differences affect the probability and efficiency of learning anti‐predator skills from trained demonstrators. We compared anti‐predator responses of observers (fish trained by using experienced fish as demonstrators) with those of control fish, which had been ‘trained’ by untrained naïve conspecifics. We also examined how the efficiency of social learning depends on the ratio of experienced to naïve fish involved in social transmission trials. The results of these experiments will give guidelines how social learning could be utilized in developing hatchery scale training protocols.  相似文献   

9.
Ecological stability and social hierarchy   总被引:1,自引:0,他引:1  
We have examined a predator-prey model in which the predator is assumed to have a social structure of the dominance hierarchy or “peck order” type in which the feeding success of an individual is related both to the availability of food and to his social rank. We find such a social structure to be a strongly beneficial influence on population stability so long as the rewards of social dominance are not too extreme. We also show that an optimally hierarchical predator population can stably achieve a much larger depression of the prey below its carrying capacity than is possible for a simple predator population composed of identical individuals. This strongly suggests that socially structured predator populations may be more effective agents of biological control than simpler predators with no such population structure.  相似文献   

10.
A continuous-time differential equation model was constructed which describes the population dynamics of a predator prey system in which sterile prey are released in a program designed to eradicate or reduce the prey population. It was found that the dynamics of the system behave quite differently when predators are present. Two conditions were found which have differing implications for the control program. If the predators still exist when the wild prey population declines to extinction, then the SIRM is assisted by the predators, sometimes to a considereble extent. If the predators decline to extinction before the wild prey population goes extinct, then the predators may or may not assist the SIRM depending on the parameters of the system. If the predators do assist the SIRM, then a potentially dangerous situation exists in which an explosion of the prey population could occur after the predators go extinct. Predator polyphagy would probably minimize this danger of an explosion since it would stabilize the predator population.  相似文献   

11.
Upon sensing predators in their vicinity, many prey species perform antipredator displays that are thought to provide information to the predator that deters it from attacking (predator‐deterrent signals). These displays can be complex, incorporating a variety of signaling elements as well as direct physical harassment of the predator. Although the display behaviors in these communication systems are often well characterized, evidence of the efficacy of these displays in deterring predators is limited due to the challenges associated with studying free‐ranging predators. Here, we examine how the anti‐snake signals of the desert kangaroo rat (Dipodomys deserti) influence the ambush hunting behaviors of sidewinder rattlesnakes (Crotalus cerastes). We found that, although desert kangaroo rats incorporate a number of signal elements into their antipredator display, only sand kicking behavior was a significant factor in motivating sidewinder rattlesnakes to cease hunting: high rates of sand kicking led to early abandonment of ambush coils. These results indicate that anti‐snake displays of small mammals may be especially effective at mitigating the threat posed by rattlesnakes when those displays incorporate physical harassment as well as signaling.  相似文献   

12.
Understanding the strength and diversity of predator‐prey interactions among species is essential to understand ecosystem consequences of population‐level variation. Directly quantifying the predatory behaviour of wild fishes at large spatial scales (>100 m) in the open sea is fraught with difficulties. To date the only empirical approach has been to search for correlations in the abundance of predators and their putative prey. As an example we use this approach to search for predators of the keystone crown‐of‐thorns starfish. We show that this approach is unlikely to detect predator–prey linkages because the theoretical relationship is non‐linear, resulting in multiple possible prey responses for single given predator abundance. Instead we suggest some indication of the strength and ecosystem importance of a predator–prey relationship can be gained by using the abundance of both predators and their putative prey to parameterize functional response models.  相似文献   

13.
In positive frequency-dependent predation, predation risk of an individual prey correlates positively with the frequency of that prey type. In a number of small-scale experiments individual predators have shown frequency-dependent behaviour, often leading to the conclusion that a population of such predators could maintain prey polymorphism. Using simulations, I studied the dynamics of frequency-dependent predation and prey polymorphism. The model suggests that persistence of prey polymorphism decreases with increasing number of predators that show frequency-dependent behaviour, questioning conclusions about polymorphism based on experiments with few predators. In addition, prey population size, prey crypsis, difference in crypsis between prey morphs and the way the behaviour was adjusted affected the persistence of polymorphism. Under some circumstances prey population remained polymorphic for a shorter time under frequency-dependent than under frequency-independent predation. This suggests that although positive frequency-dependent predator behaviour may maintain prey polymorphism, it is not a sufficient condition for persistent prey polymorphism.  相似文献   

14.
Captive animals may lose the ability to recognize their natural predators, making conservation programs more susceptible to failure if such animals are released into the wild. Collared peccaries are American tayassuids that are vulnerable to local extinction in certain areas, and conservation programs are being conducted. Captive-born peccaries are intended for release into the wild in Minas Gerais state, southeastern Brazil. In this study, we tested the ability of two groups of captive-born collared peccaries to recognize their predators and if they were habituated to humans. Recognition tests were performed using models of predators (canids and felids) and non-predators animals, as well as control objects, such as a plastic chair; a human was also presented to the peccaries, and tested as a separate stimulus. Anti-predator defensive responses such as fleeing and threatening displays were not observed in response to predator models. Predator detection behaviors both from visual and olfactory cues were displayed, although they were not specifically targeted at predator models. These results indicate that collared peccaries were unable to recognize model predators. Habituation effects, particularly on anti-predator behaviors, were observed both with a 1-h model presentation and across testing days. Behavioral responses to humans did not differ from those to other models. Thus, if these animals were to be released into the wild, they should undergo anti-predator training sessions to enhance their chances of survival.  相似文献   

15.
Animal display behaviors are used to convey specific messages to other animals, including potential mates, rivals, and predators. However, because these different types of interactions can be mediated by a single behavioral display, or conversely, multiple signals can be used to convey one specific message, interpretation of any particular behavioral display can be difficult. Leiocephalus lizards (i.e., curly tails) provide an excellent opportunity to study the use of display behaviors across multiple contexts. Previous research has demonstrated that the use of tail curling in these lizards is associated with predation risk, but less is known regarding the use of this behavior in social interactions with conspecifics. The goal of this study was to determine the extent to which tail curling display behavior is used to mediate both social and predatory interactions in two species, Leiocephalus barahonensis and L. carinatus. We found that in lizards of both species, tail curling was used in interactions with both conspecifics and potential (human) predators. However, tail curl intensity did not differ between lizards involved in social encounters and solitary lizards, although L. barahonensis lizards performed more headbobs during social than non‐social observations. Further, L. carinatus lizards exhibited greater intensity of tail curling upon fleeing from a human predator than during observations in which individuals interacted with conspecifics, and lizards that exhibited tighter tail curls fled from predators for a longer distance. Finally, tail curl intensity was not correlated with headbob displays in either species, suggesting that these two components of display communicate different information. Our results suggest that tail curling displays, while consistently a component of interactions with potential predators, are not a necessary component of social interactions. These data contribute to a more complete understanding of how and why visual signals evolve for use in communication across multiple contexts.  相似文献   

16.
Predation is an important ecological constraint that influences communication in animals. Fish respond to predators by adjusting their visual signaling behavior, but the responses in calling behavior in the presence of a visually detected predator are largely unknown. We hypothesize that fish will reduce visual and acoustic signaling including sound levels and avoid escalating fights in the presence of a predator. To test this we investigated dyadic contests in female croaking gouramis (Trichopsis vittata, Osphronemidae) in the presence and absence of a predator (Astronotus ocellatus, Cichlidae) in an adjoining tank. Agonistic behavior in T. vittata consists of lateral (visual) displays, antiparallel circling, and production of croaking sounds and may escalate to frontal displays. We analyzed the number and duration of lateral display bouts, the number, duration, sound pressure level, and dominant frequency of croaking sounds as well as contest outcomes. The number and duration of lateral displays decreased significantly in predator when compared with no-predator trials. Total number of sounds per contest dropped in parallel but no significant changes were observed in sound characteristics. In the presence of a predator, dyadic contests were decided or terminated during lateral displays and never escalated to frontal displays. The gouramis showed approaching behavior toward the predator between lateral displays. This is the first study supporting the hypothesis that predators reduce visual and acoustic signaling in a vocal fish. Sound properties, in contrast, did not change. Decreased signaling and the lack of escalating contests reduce the fish’s conspicuousness and thus predation threat.  相似文献   

17.
Environments and experiences encountered in early life stages of animals shape their adult behaviour. When environments are maintained for several generations, differential selection forces act upon individuals to select those most fit to the particular conditions. As such, differences in the behaviour of captive bred and wild caught individuals have been observed recurrently. In fish, hatchery raised individuals tend to seek refuge less, making them more vulnerable to predators. We tested the hypothesis that captive breeding induces non‐adaptive changes in behaviour of freshwater angelfish, Pterophyllum scalare. Wild‐caught and captive‐bred fish were exposed to a natural predator and measured for their anti‐predator behaviours; no differences were found in behaviour under control conditions. When exposed to a natural predator, wild‐caught fish exhibited significantly shorter freezing durations than captive‐bred fish, and took significantly shorter time to resume normal behaviour. No differences in the time taken to initiate investigations of the predator were detected. The results demonstrate that captive‐bred fish respond differently than their wild counterparts when exposed to a natural predator, and that this domestication has implications for captive rearing programmes.  相似文献   

18.
19.
The indirect, non-lethal results of predation, such as reduction in feeding time or restraint in seeking sexual partners and/or natural resources, have a drastic effect on prey populations. In this study, we investigated the behaviour of two serpa tetras Hyphessobrycon eques groups, one wild and the other born and raised in captivity, to evaluate how their feeding behaviour is affected by the avian predator, the rufescent tiger-heron Trigrisoma lineatum (using a taxidermy specimen). For a total of 133 observation hours, the feeding behaviour of each fish group was observed according to the absence (control) or presence (treatments) of a predator near the aquarium surface. The results showed that the presence of a predator on the surface inhibits the feeding behaviour of H. eques. The differences observed between the groups are probably due to the fishes experiences with predators. Our results suggest that fish-eating birds may affect prey populations in streams and ponds perhaps more through non-lethal effects, on feeding behaviour for example, than directly through death rates.  相似文献   

20.
Many prey organisms will approach (inspect) potential predators, primarily to assess local risk of predation. It has been demonstrated that Ostariphysan prey fishes can detect conspecific alarm pheromones in the diet of potential predators and use this chemical information to reduce their risk of predation while still gaining significant benefits associated with predator inspection. We conducted the current study to examine the possible effects of mixed diets on the use of these chemical predator diet cues during inspection visits. Shoals of four glowlight tetras ( Hemigrammus erythrozonus ) were exposed to Jack Dempsey cichlids ( Cichlasoma octofaciatum ) which had been fed diets consisting of: 100% tetras (with alarm pheromone); 75% tetra, 25% swordtail ( Xiphophorus helleri , which lack a recognizable alarm pheromone); 25% tetra, 75% swordtail; or 100% swordtails. Tetras significantly increased their anti-predator behaviour in response to predators fed 100% tetra or the two mixed predator diets, but not when exposed to predators fed a 100% swordtail diet. Likewise, we observed significant differences in inspection behaviour. Tetras took longer to initiate an inspection, inspected in smaller groups and directed a greater proportion of inspection visits towards the tail region of the predator when it had been fed 100% tetra or either of the two mixed prey diets. We found no significant differences in either anti-predator or inspection behaviour among the three diet treatments containing tetras. These data strongly suggest that glowlight tetras are capable of detecting relatively small amounts of conspecific alarm pheromone in the diet of potential predators and that they modify their behaviour based on the presence or absence of these cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号