首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Extracellular -N-acetylhexosaminidase in basic specific activity 1.5 U/mg protein was induced 15 – 35 times (up to 50 U/mg protein) by mixture of chitooligomers (crude chitin hydrolysate), 10 – 20 times (20 – 30 U/mg protein) by N-acetylglucosamine, and 10 times (14 U/mg protein) by chitosan in Aspergillus oryzae. Addition of NaCl (15 – 23 g/l) to the cultivation medium enhanced the induction in 10 – 20 %.  相似文献   

2.
In the wild-type of Corynebacterium glutamicum, the specific activity of glutamate dehydrogenase (GDH) remained constant at 1.3 U (mg protein)–1 when raising the ammonia (NH4) concentration in the growth medium from 1 to 90 mM. In contrast, the glutamine synthetase (GS) and glutamate synthase (GOGAT) activities decreased from 1.1 U (mg protein)–1 and 42 mU (mg protein)–1, respectively, to less than 10 % of these values at NH4 concentrations > 10 mM suggesting that under these conditions the GDH reaction is the primary NH4 assimilation pathway. Consistent with this suggestion, a GDH-deficient C. glutamicum mutant showed slower growth at NH4 concentrations 10 mM and, in contrast to the wild-type, did not grow in the presence of the GS inhibitor methionine sulfoximine. © Rapid Science Ltd. 1998  相似文献   

3.
Aspergillus fumigatus removed uranium(VI) very rapidly and reached equilibrium within 1 h of contact of biomass with the aqueous metal solution. Biosorption data fitted to Langmuir model of isotherm and a maximum loading capacity of 423 mg U g–1 dry wt was obtained. Distribution coefficient as high as 10,000 (mg U g–1)/(mg U ml–1) at a residual metal ion concentration of 19 mg l–1 indicates its usefulness in removal of uranium(VI) from dilute waste streams. Optimum biosorption was seen at pH 5.0 and was independent of temperature (5–50°C ). Initial metal ion concentration significantly influenced uptake capacity which brought down % (w/w) uranium(VI) removal from 90 at 200 mg U l–1 to 35 at 1000 mg U l–1. Presence of 0.84 mmol Fe2+, Fe3+, Ca2+ and Zn2+ had no effect on uranium(VI) biosorption unlike Al3+ (0.84 mM) which was inhibitory.  相似文献   

4.
It proves that a purifed Anti-Microbial Factor (AMF) from human promyelocytes has strong activity on Gram(–) and Gram(+) bacteria, showing 0.5 (g/ml) of Minimal Bacterical Concentration (MBC) on bothE. coli andS. aureus. For mass production of AMF, chemostat cultivation is recommended to accumulate cells out of the reactor since it is an intracellular protein and its system requires only 1% serum in the medium. Its production process proves to be closely growth-related. 1.7×10–8 (g/viable cell/day) of maximum specific AMF production rate is estimated at 0.026 h–1 of dilution rate, maintaining 6×106 (viable cell/ml). Ca. 300 (mg/ml) of crude AMF can be obtained for 50 days of continuous cultivation under optimal conditions. The cell growth reaches relatively fast steady state.  相似文献   

5.
Enzyme production by a new mesophilic Streptomyces isolate was investigated which grew optimally on 1% (w/v) xylan and 10% (w/v) wheat bran at pH 7 and 37 °C. Xylan induced only CMCase (0.29 U/ml) besides xylanase (22–35 U/ml, 40–49 U/mg protein). Wheat bran induced xylanase (105 U/ml, 17.5 U/mg protein), CMCase (0.74 U/ml), -xylosidase (0.009 U/ml), -glucosidase (0.026 U/ml), -L-arabinofuranosidase (0.049 U/ml), amylase (1.6 U/ml) and phytase (0.432 U/ml). The isolate was amenable to solid state cultivation and produced increased levels of xylanase (146 U/ml, 28 U/mg protein). The pH and temperature optima of the crude xylanase activity were 5.5 and 65 °C respectively. The pI was 6.0 as determined by PEG precipitation. The crude enzyme was applied in treatment of paper pulp and predigestion of poultry feed and was found to be effective in releasing sugars from both and soluble phosphorus from the latter.  相似文献   

6.
Two different immobilisation techniques for lipases were investigated: adsorption on to Accurel EP-100 and deposition on to Celite. The specific activities were in the same order of magnitude, 2.9 (mol min–1 mg protein) when Celite was used as support and 2.3 (mol min–1 mg–1 protein) when Accurel EP-100 was used as support, even if the amount of lipase loaded differed by 2 orders of magnitude. Immobilisation on Accurel EP-100 was the preferred technique since 40–100 times more protein can be loaded/per g carrier, thus yielding a more active catalyst. The water activity profiles in lipase catalysed esterification were influenced by the amount of protein adsorbed to Accurel EP-100. Higher protein loading (40 mg g–1) resulted in a bell-shaped water activity profile with highest specific activity (6.1 mol min–1 mg–1 protein) at a w=0.11, while an enzyme preparation with low protein loading (4 mg g–1) showed highest specific activity at a w=0.75.  相似文献   

7.
A method of isolation and purification of lipase (EC 3.1.1.3) from the germ of wheat (Triticum aestivumL.) is described. An electrophoretically homogeneous preparation of the enzyme (specific activity, 622.5 × 10–3 mol/min per mg protein) was obtained after 61-fold purification. The molecular weight of the enzyme, determined by gel chromatography, was 143 ± 2 kDa. The optimal conditions for the enzyme were 37°C and pH 8.0. The homogeneous preparation of the lipase exhibited high thermal stability: over 20% of the original activity was retained after incubation of the preparation at high temperatures (60–90°C) for 1 h at pH 8.0.  相似文献   

8.
Summary A strain ofFusarium moniliforme, previously used for microbial protein production, excreted lactase (-D-galactosidase, EC.3.2.1 23) when cultivated either in a whey liquid medium or on a wheat bran solid medium. The enzyme produced in both media had pH and temperature optima of 4–5 and 50–60°C respectively and was particularly suitable for processing acid whey.In the whey culture, maximum lactase yield was observed after 95 h of growth at 30°C and whey lactose concentration of 9%. The addition of ammonium, potassium and sodium ions to the growth medium considerably enhanced lactase production. A maximum enzyme yield corresponding to hydrolysis of 3 nmoles o-nitrophenyl--D-galactopyranoside sec–1 ml–1 of growth medium, at pH 5 and 60°C, was obtained.In the wheat bran culture, the maximum enzyme yield was obtained after 140 h of growth at 28–30°C. A marked increase in the enzyme production was observed when nitrate or phosphate was added to the growth medium. Also, the addition of certain agricultural by-products (molasses, whey) enhanced lactase production. The observed maximum yield corresponding to the hydrolysis of 182 nmoles of ONPG sec–1 g–1 of wheat bran, at pH 5 and 60°C, is comparable to that reported for certain microorganisms used commercially for lactase production.  相似文献   

9.
Summary Chaetomium cellulolyticum (ATCC 32319) was cultivated on glucose, Avicel and/or Sigmacell in a 20-1 stirred tank batch reactor. The substrate (cellulose) concentration, the cell mass concentration (through protein and/or nitrogen content), reducing sugar concentration, the enzyme activity, the alkali consumption rate, the dissolved O2 and CO2 concentrations in the outlet gas were measured. The specific growth rate, the substrate yield coefficient, cell productivity, the oxygen consumption rate, the CO2 production rate and the volumetric mass transfer coefficient were determined. At the beginning of the growth phase the oxygen utilization rate exhibits a sharp maximum. This maximum could be used to start process control. Because of the long lag phase periodic batch operation is recommended.Symbols CP cell protein concentration (g l–1) - FPA FP enzyme activity (IU l–1) - GP dissolved protein concentration (g l–1) - IU international unit of enzyme activity - kLa volumetric mass tranfer coefficient (h–1) - LG alkali (1 n NaOH) consumption (ml) - LGX specific alkali consumption rate per cell mass (ml g–1 h–1) - P cell mass productivity (g l–1 h–1) - specific oxygen consumption rate per cell mass (g g–1 h–1) - Q aeration rate (volumetric gas flow rate per volume of medium, vvm) (min–1) - N impeller speed (revolution per minute, rpm) (min–1) - S substrate concentration (g l–1) - S0 S at tF=0 (g l–1) - S0 S in feed (g l–1) - SR acid consumption (ml) - TDW total dry weight (g l–1) - T temperature (° C) - tF cultivation time (h) - U substrate conversion - X cell mass concentration (g l–1) - YX/S vield coefficient - specific growth rate (h–1) - m maximum specific growth rate (h–1)  相似文献   

10.
Summary The kinetics of -mannanase (EC 3.2.1.77) and -mannosidase (EC 3.2.1.24) formation by a yeast cell wall lytic Arthrobacter species were studied. Growth () on yeast mannan was multiphasic and caused by mannose (=0.29 h–1) liberated by enzyme action from mannan. Early enzyme formation was soon repressed by mannose and depressed by its restricted availability during late exponential and stationary growth. Synthesis of -mannosidase occurred predominantly at the late stage of substrate utilization. Fructose was detected as an equally potent inducer for -mannanase formation as yeast mannan, being a simple and cheap substrate for large-scale cultivation. Growth on fructose was reduced (=0.20 h–1), enzyme synthesis being growth associated; nevertheless, comparable -mannanase levels [180 (U) units l–1] were formed. -Mannosidase activity was only detectable in small amounts. Continuous culture experiments gave values for maximal productivity of mannanase of 18 U h–1 g–1 and enzyme yield per biomass (Y EA/X) of 100 U g–1. Moreover, the substrate saturation constant (Monod constant) and maintenance coefficient were estimated for fructose as 115 mg l–1 and 4 mg h–1 g–1, respectively.  相似文献   

11.
Cell-free extracts of L-arabinose- and d-xylose-grown cells of the mesophilic anaerobic bacterium Bacteroides xylanolyticus X5-1 contained high activities [2 units (U)/mg] of an -l-arabinofuranosidase (EC 3.2.1.55). The enzyme was also produced during growth on xylan, but not during growth on glucose or cellobiose. The enzyme was mainly extracellularly attached to the cell when the organism was grown on xylan and was not released into the medium. The enzyme was purified 41-fold to apparent homogeneity. The native enzyme had an apparent molecular mass of 364 kDa and was composed of six polypeptide subunits of 61 kDa. The enzyme displayed a pH optimum of 5.5–6.0, and a pH stability of 5.5–9.0. The temperature optimum was 50° C and the enzyme was stable up to 50° C. Thiol groups were essential for activity, but the enzyme activity was not dependent on divalent cations. The Michaelisconstant (Km) and maximal reaction velocity (Vmax) for p-nitrophenyl--l-arabinofuranoside were 0.5 mm and 155 U/mg protein, respectively. The enzyme was specific for the -linked arabinoside in the furanoside configuration. The enzyme displayed activity with arabinose-containing xylo-oligosaccharides with a polymerization degree of 2–5, but not with the polymeric substrates oat-spelt xylan or arabinogalactan. The enzyme belongs to the Streptomyces purpurascens-type of -l-arabinofuranosidase.  相似文献   

12.
The kinetics of the release of chitinolytic activity (endochitinase EC 3.2.1.14, \-N-acetyglucosaminidase EC 3.2.1.30) by a yeast cell wall lytic Arthrobacter species was studied. The organism was cultivated on yeast cell wall, mycelium of Trichoderma reesei, colloidal chitin, N-acetylglucosamine, glucosamine and mixtures with acetate. With the exception of yeast cell wall, these substrates were used as the sole source of carbon and nitrogen. The growth on colloidal chitin (0.5%) proceeded at a maximum specific growth rate (umax) of 0.23 h–1 and yielded 2700 mU1–1 chitinase. Yeast cell wall and mycelium of T. reesei supported more rapid growth (max = 0.30 h–1 and 0.25 h–1 respectively) but yielded reduced chitinase activity (565 mUl–1 and 700 mUl–1). The growth rate on glucosamine (max = 0.24 h–1) was reduced when this was mixed with acetate (max = 0.12 h–1), whereas the enzyme yield was increased from 720 mUl–1 to 960 mUl–1. The same effect on growth rate was observed with glucose and equimolar mixtures of glucose and acetate, indicating a strong impact of the organic acid on carbohydrate transport or metabolism. The growth of adapted cells on N-acetylglucosamine was comparable to that observed on an equimolar mixture of glucosamine and acetate, indicating that N-acetylglucosamine is rapidly hydrolysed by adapted cells.  相似文献   

13.
When growth-phase cell suspension cultures of Scutellaria baicalensis were treated with 50 g of yeast elicitor preparation ml–1, both oleanolic acid and ursolic acid transiently increased in the culture medium rather than in the cells. The maximal triterpenoid concentration was 13.7 mg l–1 media approx. 35 h after treatment, whereas the maximum concentration was 2.1 mg l–1 media after about 20 h following treatment with methyl jasmonate. Elicitor treatment also doubled phospholipase A2 activity (25 pmol mg–1 min) and the simultaneous treatment of aristolochic acid, a phospholipase A2 inhibitor, inhibited triterpenoids accumulation as well as phospholipase A2 activity.  相似文献   

14.
15.
Summary The kinetics ofBordetella pertussis growth was studied in a glutamate-limited continuous culture. Growth kinetics corresponded to Monod's model. The saturation constant and maximum specific growth rate were estimated as well as the energetic parameters, theoretical yield of cells and maintenance coefficient. Release of pertussis toxin (PT) and lipopolysaccharide (LPS) were growth-associated. In addition, they showed a linear relationship between them. Growth rate affected neither outer membrane proteins nor the cell-bound LPS pattern.Nomenclature X cell concentration (g L–1) - specific growth rate (h–1) - m maximum specific growth rate (h–1) - D dilution rate (h–1) - S concentration of growth rate-limiting nutrient (glutamate) (mmol L–1 or g L–1) - Ks substrate saturation constant (mol L–1) - ms maintenance coefficient (g g–1 h–1) - Yx/s theoretical yield of cells from glutamate (g g–1) - Yx/s yield of cells from glutamate (g g–1) - YPT/s yield of soluble PT from glutamate (mg g–1) - YKDO/s yield of cell-free KDO from glutamate (g g–1) - YPT/x specific yield of soluble PT (mg g–1) - YKDO/x specific yield of cell-free KDO (g g–1) - qPT specific soluble PT production rate (mg g–1 h–1) - qKDO specific cell-free KDO production rate (g g–1 h–1)  相似文献   

16.
The kinetics of amylolytic enzyme formation by a yeast cell wall lytic Arthrobacter species were studied. Cultivation on autoclaved cells of baker's yeast showed that amylase formation was closely related to trehalose and glycogen dissimilation. Growth on yeast glycogen (0.5%) proceeded quite rapidly ( = 0.31 h–1) with extensive amylase formation during exponential cell multiplication and a further low increase in activity during the stationary phase. Beside amylolytic activity [450 units (U) l–1] the formation of a relatively high level of -glucosidase (90 U l–1) was detected, the latter almost exclusively bound to bacterial cells. Growth on 0.5% trehalose occurred at a reduced rate ( = 0.22 h–1) with post-logarithmic enzyme synthesis in the stationary phase. Amylase activity attained a level of 1200 U l–1, whereas -glucosidase was very low at 7.7 U l–1. Continuous culture experiments in the chemostat showed maximal volumetric productivity of amylase (105 U l–1 h–1) at a dilution rate of 0.15 h–1. Growth on various carbohydrates revealed low levels of amylolytic activity (<100 U l–1), which were increased by a -1,4-glucans and oligosaccharides such as starch, dextrin, maltotriose and maltose. On 0.5% maltose, growth-associated enzyme synthesis (230 U l–1) was detected at a reduced growth rate ( = 0.14 h–1). Amylolytic enzyme preparations from the culture fluid showed an unusual cleavage pattern; acting on starch, the polymer was almost completely hydrolysed to maltotriose and maltose in a molar ratio of 3:1.Correspondence to: W. A. Hampel  相似文献   

17.
The turnover of organic material determines the availability of plant nutrients in unfertilized soils, and this applies particularly to the alkaline saline soil of the former Lake Texcoco in Mexico. Uniformly labelled [14C] maize and its neutral detergent fibre (NDF) fraction, mainly containing cellulose and hemi-cellulose, were added to these soils to investigate dynamics of C and N and the importance of the NDF fraction. Soil with electrolytic conductivity (EC) of 1.2, 3.2, 24.6 and 32.7 dS m–1 was incubated aerobically, while CO2 and 14CO2 production, and inorganic N dynamics (NH4 +, NO2 , NO3 ) were monitored. The amount of 14C-labelled maize mineralized after 97 days was >500 mg C kg–1 dry soil (D.S.) of the 1000 mg C kg–1 D.S. added in soils with EC 24.6 dS m–1, but only 257 mg C kg–1 D.S. in soil with EC 32.7 dS m–1. The decomposition of the NDF fraction showed a lag, greatest in the soil with the largest EC and the amount of 14C-labelled NDF fraction mineralized after 97 days was > 300 mg C kg–1 D.S. in soils with EC 3.2 dS m–1, but in the soil with EC 32.7 dS m–1 it was only 118 mg C kg–1D.S. Application of 14C-labelled maize and the NDF fraction induced a priming effect, most accentuated at the onset of the incubation. The ratio between the amount of CO2 produced due to the priming effect and the 14CO2 produced was 16-times larger when 250 mg maize-C kg–1 D.S. was added and only 3-times when 2000 mg maize-C kg–1 D.S. was added. Oxidation of NO2 occurred in soil with EC 32.7 dS m–1 as witnessed by decreases in concentration of NO2 and increases in concentration of NO3 . It was found that EC affected the decomposition of maize, the NDF fraction and the priming effect. Decomposition of cellulose and oxidation of NO2 occurred in soil with EC 32.7 dS m–1 although cellulolytic micro-organisms and autotrophic NO2 oxidizers could previously not be isolated from this soil.  相似文献   

18.
Summary Growth and phenolic production by two heterotrophic suspension cultures (SW-1 and SW-2) of sandalwood cultivated in a 2.5 L bioreactor were investigated. Cultures of SW-1 cell suspensions resulted in a maximum phenolic content of 32.5 mg L–1 compared to 12.5 mg L–1 produced by SW-2 cell suspensions. Fresh weight doubling time (Td) was 5.8 days and the specific growth rate () was 0.12 d–1 during exponential growth for both cell lines. The pH of the culture medium decreased from 5.5 to 3.5 during the exponential growth phase of SW-1 and SW-2 cell suspensions. The dissolved oxygen content also dropped steadily during culture and remained at 40% throughout exponential growth phase. These results should provide a basis for developing sandalwood cell cultures for bioproduction of useful compounds.Abbreviations 2,4-D: 2–4 dichlorophenoxyacetic acid - BA N6-benzyladenine - Eh Medium oxidation-reduction potential - KLa Oxygen transfer coefficient - MS Murashige and Skoog (1962) basal medium - SW-1 and SW-2 Sandalwood suspension lines  相似文献   

19.
Aspergillus niger van Teighem, isolated in our laboratory from samples of rotten wood logs, produced extracellular phytase having a high specific activity of 22,592 units (mg protein)–1 . The enzyme was purified to near homogeneity using ion-exchange and gel-filtration chromatography. The molecular properties of the purified enzyme suggested the native phytase to be oligomeric, with a molecular weight of 353 kDa, the monomer being 66 kDa. The purified enzyme exhibited maximum activity at pH 2.5 and 52–55°C. The enzyme retained 97% activity after a 24-h incubation at 55°C in the presence of 10 mM glycine, while 87% activity was retained when no thermoprotectant was added. Phytase activity was not affected by most metal ions, inhibitors and organic solvents. Non-ionic and cationic detergents (0.1–5%) stabilise the enzyme, while the anionic detergent (SDS), even at a 0.1% level, severely inhibited enzyme activity. The chaotropic agents guanidinium hydrochloride, urea, and potassium iodide (0.5–8 M), significantly affected phytase activity. The maximum hydrolysis rate (Vmax) and apparent Michaelis-Menten constant (Km) were 1,074 IU/mL and 606 M, respectively, with a catalytic turnover number of 3×105 s–1 and catalytic efficiency of 3.69×108 M–1 s–1.  相似文献   

20.
Recombinant human cyclooxygenase 2 (Cox 2) was expressed in stably transformed Drosophila melanogaster S2 cells, and was present primarily in the cellular fraction at a molecular weight of 70 to 74 kDa. Recombinant Cox 2 was purified using Ni2+-affinity fractionation to a specific activity of 24 800 U mg–1 protein. The peak level of recombinant Cox 2 production was 1.6 g (107 cells)–1, seven days after induction with 0.5 mM CuSO4. Supplementing the cultures with dimethylsulfoxide or sodium butyrate increased recombinant Cox 2 production by 170% and 86%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号