首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryptochrome 1 (CRY1) is a flavin-type blue light receptor of Arabidopsis thaliana which mediates inhibition of hypocotyl elongation. In the work described in this report it is demonstrated that CRY1 is a soluble protein expressed in both young seedlings grown either in the dark or under light, and in different organs of adult plants. The functional role of CRY1 was further investigated using transgenic Arabidopsis plants overexpressing CRY1. It is demonstrated that overexpression of CRY1 resulted in hypersensitivity to blue, UV-A, and green light for the inhibition of hypocotyl elongation response. Transgenic plants overexpressing CRY1 also exhibited a dwarf phenotype with reduced size in almost every organ. This was in keeping with the previous observation of reciprocal alterations found in hy4 mutant plants and is consistent with a hypothesis that CRY1 mediates a light-dependent process resulting in a general inhibitory effect on plant growth. In addition, transgenic plants overexpressing CRY1 showed increased anthocyanin accumulation in response to blue, UV-A, and green light in a fluence rate-dependent manner. This increase in anthocyanin accumulation in transgenic plants was shown to be concomitant with increased blue light-induction of CHS gene expression. It is concluded that CRY1 is a photoreceptor mediating blue light-dependent regulation of gene expression in addition to its affect on plant growth.  相似文献   

2.
PP7 is a positive regulator of blue light signaling in Arabidopsis   总被引:6,自引:0,他引:6       下载免费PDF全文
Møller SG  Kim YS  Kunkel T  Chua NH 《The Plant cell》2003,15(5):1111-1119
  相似文献   

3.
Shalitin D  Yu X  Maymon M  Mockler T  Lin C 《The Plant cell》2003,15(10):2421-2429
Cryptochromes are photolyase-like blue/UV-A light receptors that regulate various light responses in animals and plants. Arabidopsis cryptochrome 1 (cry1) is the major photoreceptor mediating blue light inhibition of hypocotyl elongation. The initial photochemistry underlying cryptochrome function and regulation remain poorly understood. We report here a study of the blue light-dependent phosphorylation of Arabidopsis cry1. Cry1 is detected primarily as unphosphorylated protein in etiolated seedlings, but it is phosphorylated in plants exposed to blue light. Cry1 phosphorylation increases in response to increased fluence of blue light, whereas the phosphorylated cry1 disappears rapidly when plants are transferred from light to dark. Light-dependent cry1 phosphorylation appears specific to blue light, because little cry1 phosphorylation is detected in seedlings treated with red light or far-red light, and it is largely independent from phytochrome actions, because no phytochrome mutants tested significantly affect cry1 phosphorylation. The Arabidopsis cry1 protein expressed and purified from insect cells is phosphorylated in vitro in a blue light-dependent manner, consistent with cry1 undergoing autophosphorylation. To determine whether cry1 phosphorylation is associated with its function or regulation, we isolated and characterized missense cry1 mutants that express full-length CRY1 apoprotein. Mutant residues are found throughout the CRY1 coding sequence, but none of these inactive cry1 mutant proteins shows blue light-induced phosphorylation. These results demonstrate that blue light-dependent cry1 phosphorylation is closely associated with the function or regulation of the photoreceptor and that the overall structure of cry1 is critical to its phosphorylation.  相似文献   

4.
5.
A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabidopsis cryptochrome gene family (CRY1 and CRY2) overlap in function, but their proteins differ in stability: cry2 is rapidly degraded under light fluences (green, blue, and UV) that activate the photoreceptor, but cry1 is not. Here, we demonstrate by overexpression in transgenic plants of cry1 and cry2 fusion constructs that their domains are functionally interchangeable. Hybrid receptor proteins mediate functions similar to cry1 and include inhibition of hypocotyl elongation and blue light-dependent anthocyanin accumulation; differences in activity appear to be correlated with differing protein stability. Because cry2 accumulates to high levels under low-light intensities, it may have greater significance in wild-type plants under conditions when light is limited.  相似文献   

6.
7.
Cryptochromes are blue light photoreceptors found in plants, bacteria, and animals. In Arabidopsis, cryptochrome 2 (cry2) is involved primarily in the control of flowering time and in photomorphogenesis under low-fluence light. No data on the function of cry2 are available in plants, apart from Arabidopsis (Arabidopsis thaliana). Expression of the tomato (Solanum lycopersicum) CRY2 gene was altered through a combination of transgenic overexpression and virus-induced gene silencing. Tomato CRY2 overexpressors show phenotypes similar to but distinct from their Arabidopsis counterparts (hypocotyl and internode shortening under both low- and high-fluence blue light), but also several novel ones, including a high-pigment phenotype, resulting in overproduction of anthocyanins and chlorophyll in leaves and of flavonoids and lycopene in fruits. The accumulation of lycopene in fruits is accompanied by the decreased expression of lycopene beta-cyclase genes. CRY2 overexpression causes an unexpected delay in flowering, observed under both short- and long-day conditions, and an increased outgrowth of axillary branches. Virus-induced gene silencing of CRY2 results in a reversion of leaf anthocyanin accumulation, of internode shortening, and of late flowering in CRY2-overexpressing plants, whereas in wild-type plants it causes a minor internode elongation.  相似文献   

8.
Cryptochrome 1 controls tomato development in response to blue light   总被引:9,自引:2,他引:7  
Cryptochrome genes (CRY) are a novel class of plant genes encoding proteins that bear a strong resemblance to photolyases, a rare class of flavoproteins that absorb light in the blue (B) and UV-A regions of the spectrum and utilise it for photorepair of UV-damaged DNA. In Arabidopsis, both CRY1 and CRY2 are implicated in numerous blue light-dependent responses, including inhibition of hypocotyl elongation, leaf and cotyledon expansion, pigment biosynthesis, stem growth and internode elongation, control of flowering time and phototropism. No information about the in vivo function of CRY genes is available in other plant species. The tomato CRY1 gene (TCRY1) encodes a protein of 679 amino acids, which shows 78% identity and 88% similarity to Arabidopsis CRY1. In order to verify the in vivo function of TCRY1, we constructed antisense tomato plants using the C-terminal portion of the gene. Partial repression of both mRNA and protein levels was observed in one of the transformants. The progeny from this transformant showed an elongated hypocotyl under blue but not under red light. This character co-segregated with the transgene and was dependent on transgene dosage. An additional, partially elongated phenotype was observed in adult plants grown in the greenhouse under dim light and short days with no artificial illumination. This phenotype was suppressed by artificial illumination of both short and long photoperiods. The synthesis of anthocyanins under blue light was reduced in antisense seedlings. In contrast, carotenoid and chlorophyll levels and second positive phototropic curvature were essentially unaltered.  相似文献   

9.
Dark-grown transgenic Arabidopsis seedlings expressing the C-terminal domains (CCT) of the cryptochrome (CRY) blue light photoreceptors exhibit features that are normally associated only with light-grown seedlings, indicating that the signaling mechanism of Arabidopsis CRY is mediated through CCT. The phenotypic properties mediated by CCT are remarkably similar to those of the constitutive photomorphogenic1 (cop1) mutants. Here we show that Arabidopsis cryptochrome 1 (CRY1) and its C-terminal domain (CCT1) interacted strongly with the COP1 protein. Coimmunoprecipitation studies showed that CRY1 was bound to COP1 in extracts from both dark- and light-grown Arabidopsis. An interaction also was observed between the C-terminal domain of Arabidopsis phytochrome B and COP1, suggesting that phytochrome signaling also proceeds, at least in part, through direct interaction with COP1. These findings give new insight into the initial step in light signaling in Arabidopsis, providing a molecular link between the blue light receptor, CRY1, and COP1, a negative regulator of photomorphogenesis.  相似文献   

10.
从高粱(Sorghum bicolor L.var.R111)幼苗中提取总RNA,利用RT-PCR和cDNA的3′末端的快速扩增方法(3′RACE),第一次克隆了高粱隐花色素2基因(CRY2)的cDNA序列。该序列包括了一个完整的开放阅读框,编码大小为690个氨基酸残基的蛋白质,与水稻、番茄和拟南芥CRY2蛋白质的同源性分别为87%、57%和45.5%。高粱CRY2基因组DNA含有3个内含子和4个外显子。RT-PCR检测结果表明,高粱CRY2基因在根、茎和叶中都有转录。Western blotting结果显示CRY2蛋白在根、茎和叶中表达,并在黑暗中积累,蓝光下降解。高粱CRY2可能在蓝光诱导的幼苗去黄化反应中起作用。  相似文献   

11.
高梁CRY2基因的克隆及其表达分析   总被引:1,自引:0,他引:1  
从高粱(Sorghum bicolor L. var.R1ll)幼苗中提取总RNA,利用RT-PCR和cDNA的3'末端的快速扩增方法(3'RACE),第一次克隆了高粱隐花色素2基因(CRY2)的cDNA序列.该序列包括了一个完整的开放阅读框,编码大小为690个氨基酸残基的蛋白质,与水稻、番茄和拟南芥CRY2蛋白质的同源性分别为8 7%、5 7%和45.5%.高粱CRY2基因组DNA含有3个内含子和4个外显子.RT-PCR检测结果表明,高粱CRY2基因在根、茎和叶中都有转录.Western blotting结果显示CRY2蛋白在根、茎和叶中表达,并在黑暗中积累,蓝光下降解.高粱CRY2可能在蓝光诱导的幼苗去黄化反应中起作用.  相似文献   

12.
We analyzed the natural genetic variation between Landsburg erecta (Ler) and Cape Verde Islands (Cvi) accessions by studying 105 recombinant inbred lines to search for players in the regulation of sensitivity to light signals perceived by phytochromes in etiolated seedlings of Arabidopsis. In seedlings grown under hourly pulses of far-red (FR) light, we identified three quantitative trait loci (QTLs; VLF3, VLF4, and VLF5) for hypocotyl growth inhibition and three different QTLs (VLF6, VLF7, and VLF1) for cotyledon unfolding. This indicates that different physiological outputs have selective regulation of sensitivity during de-etiolation. Ler alleles, compared with Cvi alleles, of VLF3, VLF4, VLF5, VLF7, and VLF1 enhanced, whereas the Ler allele of VLF6 reduced, the response to pulses of FR. We confirmed and narrowed down the position of some QTLs by using near-isogenic lines. VLF6 mapped close to the CRY2 (cryptochrome 2) gene. Transgenic Ler seedlings expressing the Cvi allele of CRY2 showed enhanced cotyledon unfolding under hourly pulses of FR compared with the wild type or transgenics expressing the CRY2-Ler allele. This response required phytochrome A. The cry1 cry2 double mutant lacking both cryptochromes showed reduced cotyledon unfolding under FR pulses. Because the CRY2-Cvi is a gain-of-function allele compared with CRY2-Ler, cryptochrome activity correlates positively with cotyledon unfolding under FR pulses. We conclude that the blue light photoreceptor cryptochrome 2 can modulate seedling photomorphogenesis in the absence of blue light. In addition to the nuclear loci, we identified cytoplasmic effects on seedling de-etiolation.  相似文献   

13.
14.
It has been reported that pigmentation In plants Is stimulated by light and cytoklnln (CTK); however, the signaling pathways and the relationship between light and CTK Involved In the regulation of anthocyanln accumulation remain to be elucidated. We Investigated (i) the role of blue light (BL) and CTK In anthocyanln accumulation ; and (ii) the relationship between BL and CTK In wild type (WT) and by4 mutants of Arabidopsis thaiiana. Two-d-old seedlings grown on medium with or without klnetln (KT) or zeatln (ZT) In darkness were Irradiated using BL at different fluence rates for 3 d before the anthocyanln content was determined using a spectrophotometrlc method. Anthocyanln accumulation was strongly Induced by BL In WT seedlings but not In hy4 seedlings, which demonstrated that CRY1 Is the main photoreceptor for BL. Both KT and ZT enhanced the response of the WT seedlings to BL In a dose-dependent manner, whereas they were not sufficient to promote anthocyanln eccumulatlon In darkness. In addition, data from experiments using the hy4 mutant showed that the CTK effect of BL was also CRYl-dependent. The results from experiments with three different treatment programs showed that the relationship between BL and KT In anthocyanln accumulation of Arabidopsis seedlings seems neither muItlpllcatlve nor additive coactlon, but rather Interaction. BL Is necessary for anthocyanln accumulation, and KT might be Involved In the BL signaling pathway.  相似文献   

15.
Sang Y  Li QH  Rubio V  Zhang YC  Mao J  Deng XW  Yang HQ 《The Plant cell》2005,17(5):1569-1584
Cryptochromes (CRY) are blue light receptors that share sequence similarity with photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA. Transgenic Arabidopsis thaliana seedlings expressing the C-terminal domains of the Arabidopsis CRY fused to beta-glucuronidase (GUS) display a constitutive photomorphogenic (COP) phenotype, indicating that the signaling mechanism of Arabidopsis CRY is mediated through the C-terminal domain. The role of the Arabidopsis CRY N-terminal photolyase-like domain in CRY action remains poorly understood. Here, we report the essential role of the Arabidopsis CRY1 N-terminal domain (CNT1) in the light activation of CRY1 photoreceptor activity. Yeast two-hybrid assay, in vitro binding, in vivo chemical cross-linking, gel filtration, and coimmunoprecipitation studies indicate that CRY1 homodimerizes in a light-independent manner. Mutagenesis and transgenic studies demonstrate that CNT1-mediated dimerization is required for light activation of the C-terminal domain of CRY1 (CCT1). Transgenic data and native gel electrophoresis studies suggest that multimerization of GUS is both responsible and required for mediating a COP phenotype on fusion to CCT1. These results indicate that the properties of the GUS multimer are analogous to those of the light-modified CNT1 dimer. Irradiation with blue light modifies the properties of the CNT1 dimer, resulting in a change in CCT1, activating CCT1, and eventually triggering the CRY1 signaling pathway.  相似文献   

16.
Zuo Z  Liu H  Liu B  Liu X  Lin C 《Current biology : CB》2011,21(10):841-847
Cryptochromes are blue light receptors that mediate light regulation of gene expression in all major evolution lineages, but the molecular mechanism underlying cryptochrome signal transduction remains not fully understood. It has been reported that cryptochromes suppress activity of the multifunctional E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to regulate gene expression in response to blue light. But how plant cryptochromes mediate light suppression of COP1 activity remains unclear. We report here that Arabidopsis CRY2 (cryptochrome 2) undergoes blue light-dependent interaction with the COP1-interacting protein SUPPRESSOR OF PHYTOCHROME A 1 (SPA1). We demonstrate that SPA1 acts genetically downstream from CRY2 to mediate blue light suppression of the COP1-dependent proteolysis of the flowering-time regulator CONSTANS (CO). We further show that blue light-dependent CRY2-SPA1 interaction stimulates CRY2-COP1 interaction. These results reveal for the first time a wavelength-specific mechanism by which a cryptochrome photoreceptor mediates light regulation of protein degradation to modulate developmental timing in Arabidopsis.  相似文献   

17.
拟南芥CK1A基因功能初步研究   总被引:3,自引:0,他引:3  
喻达时  赵琼  邓克勤  郭新红 《遗传》2009,31(10):1037-1042
利用RT-PCR方法从拟南芥中分离了1个CK基因家族成员CK1A, 该基因的ORF全长2 112 bp, 编码一条703个氨基酸残基的多肽。构建了CK1A基因的植物表达载体35S: GFP: CK1A, 采用基因枪法进行的洋葱表皮细胞GFP瞬时表达实验表明, 荧光信号主要分布在细胞核上, 显示CK1A基因的产物可能在细胞核上发挥作用。半定量RT-PCR分析表明: CK1A基因在花中表达量最大, 其次是茎和根, 在叶和叶柄中表达量较弱。蓝光使CK1A基因的表达升高, 12 h时表达量明显增加, 24 h时表达量下降。酵母双杂交结果显示CK1A蛋白在蓝光下能与CRY2蛋白发生相互作用, 暗示CK1A基因可能参与拟南芥的蓝光信号传导途径。  相似文献   

18.
19.
Cryptochrome blue-light photoreceptors are found in both plants and animals and have been implicated in numerous developmental and circadian signaling pathways. Nevertheless, no action spectrum for a physiological response shown to be entirely under the control of cryptochrome has been reported. In this work, an action spectrum was determined in vivo for a cryptochrome-mediated high-irradiance response, the blue-light-dependent inhibition of hypocotyl elongation in Arabidopsis. Comparison of growth of wild-type, cry1cry2 cryptochrome-deficient double mutants, and cryptochrome-overexpressing seedlings demonstrated that responsivity to monochromatic light sources within the range of 390 to 530 nm results from the activity of cryptochrome with no other photoreceptor having a significant primary role at the fluence range tested. In both green- and norflurazon-treated (chlorophyll-deficient) seedlings, cryptochrome activity is fairly uniform throughout its range of maximal response (390-480 nm), with no sharply defined peak at 450 nm; however, activity at longer wavelengths was disproportionately enhanced in CRY1-overexpressing seedlings as compared with wild type. The action spectrum does not correlate well with the absorption spectra either of purified recombinant cryptochrome photoreceptor or to that of a second class of blue-light photoreceptor, phototropin (PHOT1 and PHOT2). Photoreceptor concentration as determined by western-blot analysis showed a greater stability of CRY2 protein under the monochromatic light conditions used in this study as compared with broad band blue light, suggesting a complex mechanism of photoreceptor activation. The possible role of additional photoreceptors (in particular phytochrome A) in cryptochrome responses is discussed.  相似文献   

20.
The important issue of photoreactivation DNA repair in plants has become even more interesting in recent years because a family of genes that are highly homologous to photoreactivating DNA repair enzymes but that function as blue light photoreceptors has been isolated. Here, we report the isolation of a novel photolyase-like sequence from Arabidopsis designated PHR1 (for photoreactivating enzyme). It shares little sequence similarity with either type I photolyases or the cryptochrome family of blue light photoreceptors. Instead, the PHR1 gene encodes an amino acid sequence with significant homology to the recently characterized type II photolyases identified in a number of prokaryotic and animal systems. PHR1 is a single-copy gene and is not expressed in dark-grown etiolated seedlings: the message is light inducible, which is similar to the expression profile for photoreactivation activity in plants. The PHR1 protein complements a photolyase-deficient mutant of Escherichia coli and thus confers photoreactivation activity. In addition, an Arabidopsis mutant that is entirely lacking in photolyase activity has been found to contain a lesion within this Arabidopsis type II photolyase sequence. We conclude that PHR1 represents a genuine plant photolyase gene and that the plant genes with homology to type I photolyases (the cryptochrome family of blue light photoreceptors) do not contribute to photoreactivation repair, at least in the case of Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号