首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant hexahistidine-tagged 18.5-kDa isoform of murine myelin basic protein has been characterized biochemically and immunogenically, by mass spectrometry, by circular dichroism under various conditions (in aqueous solution, with monosialoganglioside G(M1), and in 89% 2-propanol), and by transmission electron microscopy. The preparations of this protein indicated a high degree of purity and homogeneity, with no significant posttranslational modifications. Circular dichroic spectra showed that this preparation had the same degree of secondary structure as the natural bovine 18.5-kDa isoform of myelin basic protein. Incubation of the recombinant protein with lipid monolayers containing a nickel-chelating lipid resulted in the formation of fibrous assemblies that formed paracrystals of spacings 4.8 nm between fibers and 3-4 nm along them.  相似文献   

2.
Tubulin carboxypeptidase was found to be inhibited by myelin basic protein in a concentration dependent manner. The inhibition was produced by the interaction between myelin basic protein with the substrate. As a consequence of this interaction, turbid insoluble aggregates were formed at either 5 degrees or 37 degrees C. The turbidity increased by increasing the myelin basic protein concentration and it reached a plateau at a molar ratio of myelin basic protein to tubulin dimer of about 6. At plateau, the molar ration in the insoluble aggregates was about 6. When tubulin was in excess, the formation of the insoluble aggregates was diminished. However, if the excess of tubulin was added after the formation of the aggregates, the turbidity was not significantly affected. Turbidity was diminished by increasing the ionic strength.  相似文献   

3.
Myelin Basic Protein, one of the major membrane protein component of the central nervous system, was used to probe the molecular mechanism of cellular activation by phytohaemagglutinin.Pre-treatment of human lymphocytes with myelin basic protein results in a lower rising of cytosolic concentration of free calcium after stimulation with phytohaemagglutinin.This effect is dependent on myelin basic protein concentration and on the preincubation time of the protein with the cells. It is not due to a interaction between myelin basic protein and phytohaemagglutinin, but appears to be a consequence of the binding of the protein to the cell surface.The reduction of the rise of cytosolic calcium induced by phytohaemagglutinin is specific for the myelin basic protein because other proteins like albumin and protamine have no effect.  相似文献   

4.
Summary The ability of native and chemically modified myelin basic protein to induce fusion of chicken erythrocytes and to interact with lipids in monolayers at the air-water interface and liposomes was studied. Chemical modifications of myelin basic protein were performed by acetylation and succinylation: the positive charges of the native protein were blocked to an extent of about 90–95%.Cellular aggregation and fusion of erythrocytes into multinucleated cells was induced by the native myelin basic protein. This effect was diminished for both acetylated and succinylated myelin basic protein. Native myelin basic protein penetrated appreciably in sulphatide-containing lipid monolayers while lower penetration occurred in monolayers of neutral lipids. Contrary to this, both chemically modified myelin basic proteins did not show any selectivity to penetrate into interfaces of neutral or negatively charged lipids. The intrinsic fluorescence of the native and chemically modified myelin basic proteins upon interacting with liposomes constituted by dipalmitoylphosphatidycholine, glycosphingolipids, egg phosphatidic acid or dipalmitoylphosphatidyl glycerol was studied. The interaction with liposomes of anionic lipids is accompanied by a blue shift of the maximum of the native protein emission fluorescence spectrum from 346 nm to 335 nm; no shift was observed with liposomes containing neutral lipids. The acetylated and succinylated myelin basic proteins did not show changes of their emission spectra upon interacting with any of the lipids studied. The results obtained in monolayers and the fluorescence shifts indicate a lack of correlation between the ability of the modified proteins to penetrate lipid interfaces and the microenvironment sensed by the tryptophan-containing domain.Abbreviations MBP myelin basic protein - DPPC dipalmitoyl phosphatidylcholine - DPPG dipalmitoyl phosphatidylglycerol - PA phosphatidic acid  相似文献   

5.
A Gow  D J Winzor  R Smith 《Biochemistry》1987,26(4):982-987
The interaction of myristoyllysophosphatidylcholine with bovine myelin basic protein at pH 7.4 and 4.5, I = 0.48, has been investigated by a recycling partition equilibrium technique with Bio-Gel P-2 as the gel phase. Important points to emerge from this direct binding study are that it is a monomeric (not micellar) amphiphile that binds to myelin basic protein, that the amphiphile binds preferentially to the monomeric form of myelin basic protein, that this binding to monomer is highly cooperative, that the similarity of binding behavior in the two environments tested is consistent with the dominance of a hydrophobic contribution to the protein-amphiphile interaction, and that the self-association of myelin basic protein in the presence of phospholipid [Smith, R. (1982) Biochemistry 21, 2697-2701] must reflect the aggregation of a protein-amphiphile complex(es) coupled with concomitant release of some lipid. These findings are then related to earlier nuclear magnetic resonance and circular dichroism studies in which the results were interpreted on the basis that myelin basic protein bound preferentially to micellar phospholipid.  相似文献   

6.
When mixed with vesicles containing acidic phospholipids, myelin basic protein causes vesicle aggregation. The kinetics of this vesicle cross-linking by myelin basic protein was investigated by using stopped-flow light scattering. The process was highly cooperative, requiring about 20 protein molecules per vesicle to produce a measurable aggregation rate and about 35 protein molecules per vesicle to produce the maximum rate. The maximum aggregation rate constant approached the theoretical vesicle-vesicle collisional rate constant. Vesicle aggregation was second order in vesicle concentration and was much slower than protein-vesicle interaction. The highest myelin basic protein concentration used here did not inhibit vesicle aggregation, indicating that vesicle cross-linking occurred through protein-protein interactions. In contrast, poly(L-lysine)-induced vesicle aggregation was easily inhibited by increasing peptide concentrations, indicating that it did cross-link vesicles as a peptide monomer. The myelin basic protein:vesicle stoichiometry required for aggregation and the low affinity for protein dimerization suggested that multiple protein cross-links were needed to form a stable aggregate. Stopped-flow fluorescence was used to estimate the kinetics of myelin basic protein-vesicle binding. The half-times obtained suggested a rate constant that approached the theoretical protein-vesicle collisional rate constant.  相似文献   

7.
The interaction of the azo dye (2,3'-dimethyldiphenyl-7-azo-8-amino-1-napthol 3,6-disulfonic acid (TBR) and sodium dodecyl sulfate with the bovine myelin basic protein has been studied using absorbance, circular dichroism and 220 MHz PMR spectroscopy. Additional analyses of the binding reaction were carried out using light scattering, ultracentrifugal and electrophoretic techniques. A procedure for preparing pure TBR was developed. A modified structure for this synthesized TBR has been suggested. The mechanism of TBR binding to the myelin basic protein was found to be metachromatic. In addition, the interaction of TBR with the basic protein which gives rise to aggregation of the dye bound species was found to be analogous to the model proposed by Schwarz, G. and Seelig-L?ffler, A. ((1975) Biochim. Biophys. Acta 379, 125-138) to explain the binding of acridine orange with poly (alpha-L-glutamic acid). PMR spectral analyses suggested that arginine residues provide the majority of primary sites of attachment on the basic protein for TBR. The effect of sodium dodecyl sulfate binding with the bovine myelin basic protein was found to induce a minimal change in the conformation of the protein. The induction of only about 20% alpha helial structure could be demonstrated and the binding was reversed by raising the solution temperature to 73 degrees C. The difference in the observed behavior of basic protein arising from TBR binding as opposed to the binding of sodium dodecyl sulfate is viewed as resulting from two different binding mechanisms. The binding behavior of TBR is primarily a consequence of charge-charge interaction while the binding effects of sodium dodecyl sulfate are a consequence of hydrophobic interaction. The sodium dodecyl sulfate binding acts as a shield which limits charge-charge interaction in the basic protein molecule thus preventing aggregate formation while TBR imposes no such restraints.  相似文献   

8.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

9.
Abstract— Gangliosides were isolated from myelin prepared from mouse brains of different ages (23 to 490 days). Quantitative estimation of lipid-bound sialic acid levels indicated a gradual increase from 560 μg/g of myelin at 23 days to about 1200 μg/g of myelin at older ages. The major ganglioside in all myelin preparations was the monosialoganglioside G4 (GM1). However, considerable amounts of di- and trisialo species also were found in myelin from young animals. In contrast to human myelin in which the monosialoganglioside, sialosylgalactosylceramide (G7) was highly enriched (L edeen et al. , 1973), a much smaller enrichment of this ganglioside was noticed in mouse brain myelin. Ganglioside G7 was not detectable in myelin until the animals were 35 days old, and showed a slight increase with increasing age after that. The results strongly indicated that the concentration of G7 in myelin is species specific and age dependent. The study also demonstrated that the ganglioside accretion in developing mouse brain myelin was attributable to the enrichment of monosialogangliosides G4 (GM1), G5 (GM2) and G7 at the expense of polysialogangliosides.  相似文献   

10.
Heats of solution for myelin basic protein have been determined using microcalorimetry. All aqueous systems studied yielded negative heats of solution; in contrast, trifluoroethanol produced a small positive heat of solution, while reaction with dimethyl sulfoxide was strikingly exothermic. The heat of interaction for native myelin basic protein with 8 M urea at pH 4.0, 29 degrees C, was found to be -79 +/- 16 kcal/mol. The significance of these results in terms of the protein's structural organization is discussed.  相似文献   

11.
The tryptic hydrolysis of the basic protein of central nervous system myelin (A1 basic protein) and of A1 basic-lipid complexes was studied. The tryptic digestion was monitored by “finger printing”, column chromatography and amino acid analysis of the resulting pure peptides.Specific regions of the protein sequence were found to be protected from the hydrolytic action of the trypsin only after the protein was recombined with specific lipids. The degree of protection was in the order: cerebroside sulphate > acidic lipid fraction of myelin > phosphatidylsrine = total lipid extract of myelin. The protected Lys-X, Arg-X bonds were all situated in the region amino acid 20 to amino acid 113 of the intact protein. This region contains the (proline)3 bend in the protein which is stabilized by interaction with lipids and also the encephalitogenic site for monkey and rabbit.From the results reported in this publication we would like to suggest a specific interaction between a region of the A1 basic protein molecule and cerebroside sulphate. Differences in A1 basic protein-lipid interaction in different animals arising from differences in lipid composition and fatty acid composition of the different lipid species combined with minor changes in the protein sequence could explain the species variability of the encephalitogenic sites of the A1 basic protein.  相似文献   

12.
Differential scanning calorimetry was employed to investigate the interaction of GM1 gangliosides with phospholipids (phosphatidylethanolamine, phosphatidylserine or phosphatidylcholine). It was found that GM1 is completely miscible with phosphatidylethanolamine; however, the interaction with phosphatidylserine is minimal. Addition of excess Ca2+ to the interaction products of GM1 with phosphatidylcholine or phosphatidylethanolamine did not induce phase separation. The influence of myelin basic protein on the thermotropic behaviour of GM1 was also studied. It was found that basic protein has a very strong perturbing effect on GM1 micelles.  相似文献   

13.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

14.
An intrinsically unstructured human myelin basic protein (hMBP) was expressed in the milk of transgenic cows (TGmilk) and found exclusively associated with the casein micellar phase. The interaction between the recombinant protein and milk caseins was investigated using surface plasmon resonance (SPR). An anti‐human myelin basic protein antibody was covalently immobilized to the surface of the sensor chip. Subsequently the interaction between the recombinant protein (captured by this antibody) and caseins was studied in comparison to that noted with its human counterpart. Results showed a calcium‐mediated interaction between the recombinant protein and caseins. The order of magnitude of this interaction was in agreement with the number of phosphorylated residues carried by each type of casein (αs‐ > β‐ > κ‐casein). This selective interaction was not noted between the human protein and milk caseins indicating that the recombinant protein was phosphorylated to a higher extent than the human protein. The obtained results indicated that the co‐expression of the recombinant protein and caseins by the mammary gland along with the recombinant protein's ability to form calcium bridges played a key role in the association of the recombinant human myelin basic protein (rhMBP) with the casein micelles of milk. Despite this association between the recombinant protein and milk caseins, light scattering investigations using diffusing wave spectroscopy (DWS) showed no significant differences between the milks of the transgenic and the non‐transgenic control cows, with respect to both the average micelle size and surface charges. This was attributed to the low expression levels of the recombinant protein in milk. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The addition of solutions of bovine myelin basic protein to suspensions of unilamellar vesicles prepared from whole myelin suspensions results in the rapid equilibrium association of the vesicles into dimers, followed by time-dependent aggregation reactions. Other cationic proteins also induce the dimerization of the vesicles and equilibrium constants for dimer formation are obtained for bovine myelin basic protein, lysozyme, polyhistidine and myelin basic protein from carp, which differs from the bovine protein in that it contains no methylarginine residues. The bovine protein is more efficient at inducing dimer formation than the carp protein by approximately 0.93 kcal/mole; the carp protein is approximately as effective as the other cationic proteins examined. Complete methylation of the bovine MBP by AdoMet:MBP methyltransferase increases the interaction between MBP and the membrane by approximately 0.13 kcal/mole, consistent with the suggestion that a large portion of the free energy difference between the carp and bovine proteins arises from favorable interactions involving the methylarginine residues.  相似文献   

16.
A double-antibody radioimmunoassay (RIA) has been developed with antisera to purified rat brain myelin proteolipid protein (PLP). The addition of Triton X-100 allowed antibody-antigen interaction and immune precipitation in the presence of sodium dodecyl sulfate (SDS). The RIA will accurately measure 8-80 ng of PLP in buffer or human serum. The RIA is highly specific for myelin PLP and does not cross-react with material in tissues (heart, kidney, muscle, testicle, and intestine) other than the central nervous system. The antibodies to rat myelin PLP cross-react with PLP from bovine brain homogenate or myelin. Myelin PLP was found to account for 55 and 52% of total myelin protein from bovine and rat brain, respectively. Furthermore, there is a higher concentration of PLP in white than in gray matter corresponding to the degree of myelination. Unlike myelin basic protein, myelin PLP was undetectable in both bovine and rat peripheral nervous system.  相似文献   

17.
We have applied a double tagging system in order to study whether purified myelin basic protein is able to adhere to normal human peripheral T lymphocytes without the need to purify cells. Evaluation of myelin basic protein adherence to peripheral blood mononuclear cells was determined with biotinylated myelin basic protein and fluoresceinated avidin, and lymphocyte population was identified by the corresponding phycoerythrinated monoclonal antibody. The observed adherence of myelin basic protein to T lymphocytes was found to depend on protein conformation.  相似文献   

18.
The peptide portion of the lipopeptide isolated from bovine myelin basic protein contained glycine, lysine, and serine in a 2:1:1 molar ratio as determined by amino acid analysis. The N-terminus of the peptide was determined to be glycine. The tetrapeptide Gly53-Ser-Gly-Lys56 was the only segment of myelin basic protein that matched the above two characteristics. This tetrapeptide is highly conserved among the myelin basic proteins sequenced so far. After the selective degradation of the lipopeptide, phosphoserine was identified in the acid hydrolysate, thus indicating that Ser-54 of myelin basic protein in bovine brain is the site of attachment of polyphosphoinositide. Interestingly, serine-54 of myelin basic protein can be phosphorylated by the endogenous protein kinase myelin. However, myelin basic protein phosphorylated by the catalytic subunit of an exogenous soluble protein kinase failed to produce radioactively labeled lipopeptide. Hence the endogenous enzymes of myelin are thought to be involved in the formation of the covalent linkage between polyphosphoinositide and myelin basic protein. The conservation in sequence suggests a possible important structural role for the "phospholipidation" of myelin basic protein.  相似文献   

19.
Interactions of basic polypeptides and proteins with calmodulin.   总被引:5,自引:1,他引:4       下载免费PDF全文
Low concentrations (less than 10 microgram/ml) of a number of highly basic polypeptides inhibit the calmodulin-stimulated cyclic nucleotide phosphodiesterase. Inhibitory compounds include synthetic polypeptides [polylysine (D and L) and polyarginine] and basic proteins (protamine, histones H1, H2A, H2B, H3 and H4 and myelin basic protein). Polylysine of mol.wt. about 2000 or higher was inhibitory, but pentalysine did not inhibit. Other basic proteins and compounds did not inhibit, including bradykinin, spermine and putrescine. In mixtures of calmodulin and basic protein, complexes were formed whether Ca2+ was present or not. This was true for polylysine, myelin basic protein and histone H2B. These interactions suggest that the inhibition of the phosphodiesterase is due to interaction of these basic proteins with calmodulin. The wide variety of basic polypeptides and proteins that affect the calmodulin stimulation of phosphodiesterase indicates that these interactions are not specific.  相似文献   

20.
P Schulz  T F Cruz  M A Moscarello 《Biochemistry》1988,27(20):7793-7799
Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [32P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号