首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An in vivo expression system to produce large amounts of virus-derived dsRNAs in bacteria to provide a practical control of white spot syndrome virus (WSSV) in shrimp was developed. The bacterially synthesized dsRNA specific to VP28 gene of WSSV promoted gene-specific interference with the WSSV infection in shrimp. Virus infectivity was significantly reduced in WSSV-challenged shrimp injected with VP28-dsRNA and 100% survival was recorded. The inhibition of the expression of WSSV VP28 gene in experimentally challenged animals by VP28-dsRNA was confirmed by RT-PCR and Western blot analyses. Furthermore, we have demonstrated the efficacy of bacterially expressed VP28-dsRNA to silence VP28 gene expression in SISK cell line transfected with eukaryotic expression vector (pcDNA3.1) inserted with VP28 gene of WSSV. The expression level of VP28 gene in SISK cells was determined by fluorescent microscopy and ELISA. The results showed that the expression was significantly reduced in cells transfected with VP28dsRNA, whereas the cells transected with pcDNA-VP28 alone showed higher expression. The in vivo production of dsRNA using prokaryotic expression system could be an alternative to in vitro method for large-scale production of dsRNA corresponding to VP28 gene of WSSV for practical application to control the WSSV in shrimp farming.  相似文献   

3.
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans.  相似文献   

4.
5.
White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm.  相似文献   

6.
In the present study, we investigated immunological changes in viral-infected white shrimp, Litopenaeus vannamei. White shrimp were infected with white spot syndrome virus (WSSV) or co-infected with WSSV and infectious hypodermal and hematopoietic necrosis virus (IHHNV) as detected by polymerase chain reaction (PCR). The complete (100%) mortality rate of shrimp was caused by viral infection due to immune parameters being suppressed including decreases in phenoloxidase activity, total hemocyte counts, differential hemocyte counts, and the gene expressions of prophenoloxidase and peroxinectin. In addition, increases in lipopolysaccharide and beta-1,3-glucan-binding protein of hemocytes and the hepatopancreas, and respiratory bursts per cell, and a decrease in superoxide dismutase were found in viral-infected shrimp, which may have been related to the defense against viral infection.  相似文献   

7.
Syed MS  Kwang J 《PloS one》2011,6(11):e26428
White Spot Syndrome Virus (WSSV) is an infectious pathogen of shrimp and other crustaceans, and neither effective vaccines nor adequate treatments are currently available. WSSV is an enveloped dsDNA virus, and one of its major envelope proteins, VP28, plays a pivotal role in WSSV infection. In an attempt to develop a vaccine against WSSV, we inserted the VP28 gene into a baculovirus vector tailored to express VP28 on the baculovirus surface under the WSSV ie1 promoter (Bac-VP28). The Bac-VP28 incorporated abundant quantity (65.3 μg/ml) of VP28. Shrimp were treated by oral and immersion vaccination with either Bac-VP28 or wild-type baculovirus (Bac-wt). The treatment was followed by challenge with WSSV after 3 and 15 days. Bac-VP28 vaccinated shrimp showed significantly higher survival rates (oral: 81.7% and 76.7%; immersion: 75% and 68.4%) than Bac-wt or non-treated shrimp (100% mortality). To verify the protective effects of Bac-VP28, we examined in vivo expression of VP28 by immunohistochemistry and quantified the WSSV copy number by qPCR. In addition to that, we quantified the expression levels shrimp genes LGBP and STAT by real-time RT-PCR from the samples obtained from Bac-VP28 vaccinated shrimp at different duration of vaccine regime. Our findings indicate that oral vaccination of shrimp with Bac-VP28 is an attractive preventative measure against WSSV infection that can be used in the field.  相似文献   

8.
The protective efficacy of oral administration of VP28 using Bacillus subtilis as vehicles (rVP28-bs) in shrimp, Fenneropenaeus chinensis, upon challenge with white spot syndrome virus (WSSV) was investigated. The calculated relative percent survival (RPS) value of rVP28-bs fed shrimp was 83.3% when challenged on the 14th day post-administration, which is significantly higher (p < 0.001) than that of the group administered recombinant Escherichia coli over-expressing rVP28 (rVP28-e21). After immunization, activities of phenoloxidase (PO), superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) in hemolymph were analyzed. It was found that the supplementation of rVP28-bs into shrimp food pellets resulted in the most pronounced increase of iNOS activity (p < 0.001), but had the least influence on activities of PO and SOD. Besides, in the shrimp orally administered with rVP28-bs, the caspase-3 activity was one-fifth that of the control, though the signs of apoptosis (chromatin margination, nuclear fragmentation and apoptotic bodies) could not be observed by transmission electron microscope (TEM). These results suggest that by oral delivery of rVP28-bs, shrimp showed significant resistance to WSSV and an effect on the innate immune system of shrimp. The remarkably enhanced level of iNOS after rVP28-bs administration might be responsible for antiviral defense in shrimp.  相似文献   

9.
To determine whether Penaeus chinensis can be protected against white spot syndrome virus (WSSV) infection by intramuscular injection with long double-stranded RNAs (dsRNAs) as in other shrimp species and whether the protection degree by WSSV-specific dsRNAs is correlated with the roles of viral genes, P. chinensis juveniles were intramuscularly injected with long dsRNAs corresponding to VP28, VP281, protein kinase genes of WSSV, and an unrelated long dsRNA corresponding to a green fluorescence protein (GFP) gene. All shrimp injected with long dsRNAs including GFP dsRNA showed higher survival rates against WSSV infection than shrimp injected with PBS alone. Furthermore, shrimp injected with dsRNAs corresponding to VP28 and protein kinase showed higher survival rates than those injected with dsRNAs corresponding to VP281 and GFP. These results indicate that the introduction of long dsRNAs corresponding to viral proteins, which are essential for WSSV infection, is quite effective in blocking WSSV infection in P. chinensis, and suggest that dsRNA-mediated protection is a common feature across shrimp species.  相似文献   

10.
White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Previous studies have successfully demonstrated the use of DNA- and RNA-based vaccines to protect WSSV infection in shrimp. In the present study, we have explored the protective efficacy of antisense constructs directed against WSSV proteins, VP24, and VP28, thymidylate synthase (TS), and ribonucleotide reductase-2 (RR2) under the control of endogenous shrimp histone-3 (H3) or penaedin (Pn) promoter. Several antisense constructs were generated by inserting VP24 (pH3–VP24, pPn–VP24), VP28 (pH3–VP28, pPn–VP28), TS (pH3–TS, pPn–TS), and RR2 (pH3–RR2) in antisense orientation. These constructs were tested for their protective potential in WSSV infected cell cultures, and their effect on reduction of the viral load was assessed. A robust reduction in WSSV copy number was observed upon transfection of antisense constructs in hemocyte cultures derived from Penaeus monodon and Scylla serrata. When tested in vivo, antisense constructs offered a strong protection in WSSV challenged P. monodon. Constructs expressing antisense VP24 and VP28 provided the best protection (up to 90 % survivability) with a corresponding decrease in the viral load. Our work demonstrates that shrimp treated with antisense constructs present an efficient control strategy for combating WSSV infection in shrimp aquaculture.  相似文献   

11.
12.
A cDNA library was constructed from white spot syndrome virus (WSSV)-infected penaeid shrimp tissue. cDNA clones with WSSV inserts were isolated and sequenced. By comparison with DNA sequences in GenBank, cDNA clones containing sequence identical to those of the WSSV envelope protein VP28 and nucleoprotein VP15 were identified. Poly(A) sites in the mRNAs of VP28 and VP15 were identified. Genes encoding the major viral structural proteins VP28, VP26, VP24, VP19 and VP15 of 5 WSSV isolates collected from different shrimp species and/or geographical areas were sequenced and compared with those of 4 other WSSV isolate sequences in GenBank. For each of the viral structural protein genes compared, the nucleotide sequences were 100 to 99% identical among the 9 isolates. Gene probes or PCR primers based on the gene sequences of the WSSV structural proteins can be used for diagnoses and/or detection of WSSV infection.  相似文献   

13.
14.
AIMS: Construction of a recombinant vector that expresses VP292 protein of white spot syndrome virus (WSSV) and to exploit the possibility of obtaining the vaccine conferring protection against WSSV infection in shrimps. METHODS AND RESULTS: VP292 protein of WSSV was amplified from WSSV genomic DNA by PCR. The target 814 bp amplified product specific for VP292 protein was inserted in to pQE30 expression vector. The recombinant plasmid of VP292 protein was transformed and expressed in Escherichia coli under induction of isopropyl-1-1-thio-beta-D-galactoside (IPTG) and the immunoreactivity of the fusion protein was detected by Western blot. Shrimp were vaccinated by intramuscular injection of the purified protein VP292 of WSSV and challenged for 0-30 days. Vaccination trial experiments show that two injections with recombinant VP292 (rVP292) protein induced a higher resistance, with 52% relative percentage survival value, in the shrimp at the 30th day postvaccination. CONCLUSIONS: The expression system of protein VP292 of WSSV with a high efficiency has been successfully constructed. Vaccination trials show significant resistance in the shrimp vaccinated twice with recombinant VP292. SIGNIFICANCE AND IMPACT OF THE STUDY: Results of this study prosper the development of WSSV protein vaccine against WSSV infection in shrimps.  相似文献   

15.
Lu Y  Liu J  Jin L  Li X  Zhen Y  Xue H  You J  Xu Y 《Fish & shellfish immunology》2008,25(5):604-610
White spot syndrome virus (WSSV) causes high mortality and large economic losses in cultured shrimp. The VP28, VP19 and VP15 genes encode viral structural proteins of WSSV. In this study, hens were immunized with recombinant plasmid (pCI-VP28/VP19/VP15) with linkers or with inactivated WSSV, which used CpG oligodeoxynucleotides (CpG ODNs) and Freund's adjuvant as adjuvant, respectively. Egg yolk immunoglobulin (IgY) from hens immunized with inactivated vaccine and DNA vaccine was obtained, purified and used for protection of Metapenaeus ensis shrimp against WSSV. The data showed that the antibody response of the hens immunized with the DNA vaccine was improved by CpG ODNs as adjuvant, but was still inferior to inactivated WSSV in both sera and egg yolks. Using specific IgY from hens immunized with inactivated WSSV and DNA vaccine to neutralize WSSV, the challenged shrimp showed 73.3% and 33.3% survival, respectively. Thus, the results suggest that passive immunization strategy with IgY will be a valuable method against WSSV infection in shrimp.  相似文献   

16.
White spot syndrome virus (WSSV) disease is a major threat to shrimp culture worldwide. Here, we assessed the efficacy of the oral administration of purified recombinant VP28, an envelope protein of WSSV, expressed in a Gram-positive bacterium, Brevibacillus brevis, in providing protection in shrimp, Penaeus japonicus, upon challenge with WSSV. Juvenile shrimp (2-3g in body weight) fed with pellets containing purified recombinant VP28 (50mug/shrimp) for 2weeks showed significantly higher survival rates than control groups when challenged with the virus at 3days after the last day of feeding. However, when shrimp were challenged 2weeks after the last day of feeding, survival rates decreased (33.4% and 24.93%, respectively). Survival rate was dose-dependent, increasing from 60.7 to 80.3% as the dose increased from 1 to 50mug/shrimp. At a dose of 50mug/shrimp, the recombinant protein provided protection as soon as 1day after feeding (72.5% survival). Similar results were obtained with larger-sized shrimp. These results show that recombinant VP28 expressed in a Gram-positive bacterium is a potential oral vaccine against WSSV.  相似文献   

17.
The vp28 gene encoding an envelope protein (28 kDa) of white spot syndrome virus (WSSV) was amplified from WSSV-infected tiger shrimp that originated from Malaysia. Recombinant VP28 protein (r-28) was expressed in Escherichia coli and used as an antigen for preparation of monoclonal antibodies (MAbs). Three murine MAbs (6F6, 6H4 and 9C10) that were screened by r-28 antigen-based enzyme-linked immunosorbent assay (ELISA) were also able to recognize viral VP28 protein as well as r-28 on Western blot. Three non-overlapping epitopes of VP28 protein were determined using the MAbs in competitive ELISA; thus, an antigen-capture ELISA (Ac-ELISA) was developed by virtue of these MAbs. Ac-ELISA can differentiate WSSV-infected shrimp from uninfected shrimp and was further confirmed by a polymerase chain reaction (PCR) and Western blot. Approximately 400 pg of purified WSSV sample and 20 pg of r-28 could be detected by Ac-ELISA, which is comparable in sensitivity to PCR assay but more sensitive than Western blot in the detection of purified virus. Hemolymph and tissue homogenate samples collected from a shrimp farm in Malaysia during December 2000 and July 2001 were also detected by Ac-ELISA and PCR with corroborating results.  相似文献   

18.
The haemogram, phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, lysozyme activity, and the mitotic index of haematopoietic tissue (HPT) were examined after the white shrimp Litopenaeus vannamei had been fed diets containing the hot-water extract of Gracilaria tenuistipitata at 0 (control), 0.5, 1.0, and 2.0 g kg(-1) for 7-35 days. Results indicated that these parameters directly increased with the amount of extract and time, but slightly decreased after 35 days. RBs, SOD activity, and GPx activity reached the highest levels after 14 days, whereas PO and lysozyme activities reached the highest levels after 28 days. In a separate experiment, white shrimp L. vannamei, which had been fed diets containing the extract for 14 days, were challenged with Vibrio alginolyticus at 2 × 10(6) cfu shrimp(-1) and white spot syndrome virus (WSSV) at 1 × 10(3) copies shrimp(-1), and then placed in seawater. The survival rate of shrimp fed the extract-containing diets was significantly higher than that of shrimp fed the control diet at 72-144 h post-challenge. We concluded that dietary administration of the G. tenuistipitata extract at ≤1.0 g kg(-1) could enhance the innate immunity within 14 days as evidenced by the increases in immune parameters and mitotic index of HPT in shrimp and their enhanced resistance against V. alginolyticus and WSSV infections. Shrimp fed the extract-containing diets showed a higher and continuous increase in the humoral response indicating its persistent role in innate immunity.  相似文献   

19.
White spot syndrome virus (WSSV) is a major shrimp pathogen that has a widespread negative affect on shrimp production in Asia and the Americas. It is known that WSSV infects shrimp cells through viral attachment proteins (VAP) that bind with shrimp cell receptors. However, the identity of both WSSV VAP and shrimp cell receptors remains unclear. We used digoxigenin (DIG)-labeled shrimp hemocyte and gill cell membranes to bind to WSSV proteins immobilized on nitrocellulose membranes, and 4 putative WSSV VAP (37 kDa, 39 kDa and 2 above 97 kDa) were identified. Mass spectrometric analysis identified the 37 kDa putative VAP as the product of WSSV gene VP281.  相似文献   

20.
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100% mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28 envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol, triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank (PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened, stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号