首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文报告了用14C标记的光同化产物在裙带菜[Undariapinnatifida(Hary.)Sur]孢子体中的运转现象。观察到光同化产物约需20min才能从叶片表皮进入中肋的髓部。在自然条件下,光同化产物主要自叶片梢部经中肋向生长部运转,在叶片梢部和生长部之间存在明显的源一库关系。运转速度约为42~48cm/h。用组织放射自显影的方法证实了髓部的喇叭丝是主要的运转组织。向下运转的溶于酒精的光同化产物中,甘露醇占50%以上。还在光同化产物中观察到游离的谷氨酸、天门冬氨酸和丙氨酸。  相似文献   

2.
‘White syndrome’ is considered to be the most prevalent coral disease on the Great Barrier Reef, characterised by rapid rates of lesion progression and high levels of colony mortality. This study investigated the production and translocation of photoassimilates towards white syndrome lesions (WSLs) and artificially inflicted lesions in healthy and diseased colonies of tabular Acropora spp. to determine the intra-colonial response to white syndrome using 14C labelling. Translocation of 14C labelled photoassimilates was preferentially orientated away from active WSLs, with minimal 14C activity observed in the lesion borders, whilst artificial lesions (ALs) created directly opposite WSL borders showed significantly higher 14C activity, suggesting active translocation of photoassimilates for tissue regeneration. Transport of photoassimilates in healthy coral colonies was preferentially oriented towards ALs with a higher perimeter–area ratio, although translocation towards WSL boundaries was minimal even though the lesion perimeter was often the width of the colony (>200 cm). We suggest that the preferential orientation of photoassimilates away from WSLs may represent a deliberate strategy by the colony to induce a ‘shutdown reaction’ in order to preserve intra-colonial resources within areas of the colony that are more likely to survive and recover.  相似文献   

3.
Sargassum fulvellum is a brown alga recently introduced to the seaweed cultivation industry in Korea. There is current interest in the commercial scale of aquaculture of this species. For the artificial seeding and cultivation of this alga, growth and maturation were investigated from September 2002 to August 2003. Indoor culture experiments for maturation induction were also conducted at temperatures of 5, 10, 15, 20 and 25 C and irradiances of 20, 50, 80 and 100 μmol photons m−2 s−1 under 16:8 h (L:D) photoperiod. Within a given culture test range, higher temperature and irradiance levels favoured the maturation of receptacles in S. fulvellum. Using temperature and irradiance control for thalli, artificial seed production of this species could be done one month earlier than thalli matured in nature. Under natural condition, receptacle formation of the plants began in February, and the eggs were released from March to April. For mature thalli of 200 g wet wt., artificial seeding was complete enough for attachment on seed strings of 100 m. Mean production obtained from the artificial seeding technique in situ was 3.0 kg wet wt m−1 of culture rope during the cultivation period.  相似文献   

4.
5.
Wu  Chaoyuan  Li  Dapeng  Liu  Haihang  Peng  Guang  Liu  Jianxin 《Hydrobiologia》2004,512(1-3):153-156
Hydrobiologia - Undaria pinnatifida (Harv.) Sur. is one of the three main seaweed species under commercial cultivation in China. In the mid-1990s the annual production was about 20 000 tons...  相似文献   

6.
Due to the discharge of nutrients into the East China Sea, severe eutrophication has appeared in Hangzhou Bay. Therefore, we cultivated Gracilaria verrucosa on a large scale in the Jinshan enclosed sea with an area of 1.72 km2 in the northern part of Hangzhou Bay to perform bioremediation. The Fengxian enclosed sea with an area of 2.3 km2 and 50 km far from Jinshan was used as the control. The results showed that the Hangzhou Bay was severely eutrophicated before G. verrucosa cultivation. During the period of cultivation between August 2006 and July 2007, the annual growth rate of G. verrucosa was 9.42% day−1, and the sea water quality was improved from worse than grade IV to grades II–III, with the concentration of dissolved inorganic nitrogen (DIN) and PO4-P significantly lower than that in the Fengxian enclosed sea (p < 0.01). The concentration of NH4-N, NO3-N, NO2-N, and PO4-P after G. verrucosa cultivation was decreased by 54.12%, 75.54%, 49.81%, and 49.00%, respectively. The density of phytoplankton in the Jinshan enclosed sea with cultivation of G. verrucosa was 6.90 –126.53 × 104 cells m−3, which was significantly lower than that in the Fengxian enclosed sea. In addition, species diversity, richness, and evenness was significantly increased after cultivation of G. verrucosa in the Jinshan enclosed sea compared with that in the Fengxian enclosed sea. The density of Skeletonema costatum, Prorocentrum micans, and Prorocentrum donghaiense, which were the usual species of red tides at the coastal sea of China, in the Jinshan enclosed sea with cultivation of G. verrucosa was significantly lower. Based on these results, if the water quality in the Jinshan enclosed sea were to be maintained at grade I (DIN ≤0.20 mg  L−1) or II (DIN ≤0.30 mg  L−1), 21.8 t or 18.0 t fresh weight of G. verrucosa need to be cultivated, respectively. These results indicated that large-scale cultivation of G. verrucosa could play a significant role in the bioremediation of Hangzhou Bay.  相似文献   

7.
Regulation of Sorus Formation by Auxin in Laminariales Sporophyte   总被引:2,自引:0,他引:2  
Young sporophytes of Laminaria japonica Areshoug were cultured in six indole-acetic acid (IAA) concentrations (0, 10−8, 10−7, 10−6, 10−5, 10−4 M) to examine the effect of auxin on growth. The effects of auxin on sorus formation were also examined by using discs taken from the adult sporophyte. The auxin contents and IAA oxidase activities in the thallus and sorus parts of the sporophyte were determined with the blade and sporophyll of other Laminariales plants, Undaria pinnatifida (Harvey) Suringar and Alaria crassifolia Kjellman. The young sporophytes of L. japonica showed highest elongation rate in 10−5 M IAA. In contrast, the sorus formation on the discs cultured in 10−5 M IAA was markedly delayed in comparison with other concentrations, indicating that sorus formation was suppressed by IAA. Free and conjugated auxin contents were lower in the reproductive parts than in the vegetative parts. In three Laminariales sporophytes, IAA oxidase activity was about 3–9 times higher in the reproductive parts than in the vegetative parts. Taken together these results suggest that the growth and reproduction of Laminariales sporophytes are regulated by internal auxin levels. Elucidating the regulation mechanism is likely to provide information that is important for the management of plant production and the assessment of the physiological status of plants in the field.  相似文献   

8.
Codium fragile (Suringar) Hariot is an edible green alga farmed in Korea using seed stock produced from regeneration of isolated utricles and medullary filaments. Experiments were conducted to reveal the optimal conditions for nursery culture and out-growing of C. fragile. Sampling and measurement of underwater irradiance were carried out at farms cultivating C. fragile at Wando, on the southwestern coast of Korea, from October 2004 to August 2005. Growth of erect thalli and underwater irradiance were measured over a range of depths for three culture stages. During the nursery cultivation stage (Stage I), growth rate was greatest at 0.5 m depth (0.055 ± 0.032 mm day−1), where the average midday irradiance over 60 days was 924 ± 32 μmol photons m−2 s−1. During the pre-main cultivation stage (Stage II), the greatest growth rate occurred at a depth of 2 m (0.113 ± 0.003 mm day−1) with an average irradiance of 248 ± 116 μmol photons m−2 s−1. For the main cultivation stage (Stage III) of the alga, thalli achieved the greatest increase in biomass at 1 m depth (7.2 ± 1.0 kg fresh wt m−1). These results suggest that optimal growth at each cultivation stages of C. fragile could be controlled by depth of cultivation rope.  相似文献   

9.
The aim of the present work was to study the effect of indomethacin (IM), a pleiotropic therapeutic substance commonly used in animal systems, at concentration range of 10−8 to 10−3 M on the growth and metabolism of single-celled Chlorella vulgaris (Chlorophyceae). Because of the presence of the indole ring in its molecule, IM is characterized by structural similarity with natural auxins, e.g. IAA. It was found that IM influenced algal growth, macromolecular synthesis and metabolism in dose-dependent manner. IM had the highest stimulating effect on algae at 10−7 M on the 5th day of culture resulting in the increase in cell number and dry mass, DNA, RNA, proteins, phosphates, monosaccharides, photosynthetic pigments and glycolic acid content as well as protein extracellular secretion to the environment. Specific proteins from the region 20–139 kDa appeared during 10−7 M IM treatment on the 5th day of cultivation as analysed by SDS-PAGE. IM-induced photosynthetic oxygen exchange in green alga was also noted. In contrast, the treatment with IM at the highest concentration of 10−3 M suppressed cell division, dry mass production and decreased the level of the analysed parameters during the whole 7-day period of cultivation. Therefore, it could be speculated that IM functioned as a plant growth regulator affecting cell division and metabolism of green alga C. vulgaris.  相似文献   

10.
Russian Journal of Marine Biology - The brown endophytic alga Laminariocolax aecidioides (Ectocarpales: Chordariaceae) growing in Undaria pinnatifida was found in Ussuriisky Bay (Peter the Great...  相似文献   

11.
We investigated organic carbon quantity and biochemical composition, prokaryotic abundance, biomass and carbon production in the annual and platelet sea ice of Terra Nova Bay (Antarctica), as well as the downward fluxes of organic matter released by melting ice during early spring. Huge amounts of biopolymeric C accumulated in the bottom layer of the ice column concomitantly with the early spring increase in sympagic algal biomass. Such organic material, mostly accounted for by autotrophic biomass, was characterised by a high food quality and was rapidly exported to the sea bottom during sea ice melting. Prokaryote abundance (up to 1.3 × 109 cells L−1) and extracellular enzymatic activities (up to 24.3 μM h−1 for amino-peptidase activity) were extremely high, indicating high rates of organic C degradation in the bottom sea ice. Despite this, prokaryote C production values were very low (range 5–30 ng C L−1 h−1), suggesting that most of the degraded organic C was not channelled into prokaryote biomass. In the platelet ice, we found similar organic C concentrations, prokaryote abundance and biomass values and even higher extracellular enzymatic activities, but values of prokaryote C production (range 800–4,200 ng C L−1 h−1) were up to three orders of magnitude higher than in the intact bottom sea ice. Additional field and laboratory experiments revealed that the dissolved organic material derived from algae accumulating in the bottom sea ice significantly reduced prokaryote C production, suggesting the presence of a potential allopathic control of sympagic algae on prokaryote growth. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

12.
Aboveground net production rates of the subalpine stone pine (Pinus pumila) forests in central Japan were estimated by the summation method; net production was defined as the sum of annual biomass increment and annual loss due to death. In the two pine stands of different scrub heights, P1 (200 cm) and P2 (140 cm), aboveground biomass reached 177 and 126 ton ha−1, respectively. Leaf biomass was about 14 ton ha−1 in each stand. The estimates of aboveground net production during the 2 year period (1987–1989) averaged 4.1 and 3.7 ton ha−1 y−1 in P1 and P2, respectively, which were at the lowest among the pine forests in the world. Two indices of efficiency of energy fixation, that is, the ratio of net production to the total radiation during a growing season and the ratio of net production to total radiation per unit of leaf weight, were evaluated. Both efficiency indices for the twoP. pumila stands fell in the range obtained for other Japanese evergreen conifer forests. This suggested that the low annual net production of the stone pine stands were mainly due to a limitation in the length of the growing season. The pine forests were also characterized by a small allocation (about 17%) of aboveground net production into biomass increment, in comparison with other evergreen conifer forest types. Annual net carbon gain in theP. pumila forests was suggested to be largely invested in leaf production at the expense of the growth of woody parts.  相似文献   

13.
An investigation into the changing phytoplankton biomass and total water column production during autumn sea ice formation in the eastern Weddell Sea, Antarctica showed reduced biomass concentrations and extremely low daily primary production. Mean chlorophyll-a concentration for the entire study period was extremely low, 0.15±0.01 mg.m−3 with a maximum of 0.35 mg.m−3 found along the first transect to the east of the grid. Areas of low biomass were identified as those either associated with heavy grazing or with deep mixing and corresponding low light levels. In most cases phytoplankton in the <20-μm size classes dominated. Integrated biomass to 100 m ranged from 7.1 to 28.0 mg.m−2 and correlated positively with surface chlorophyll-a concentrations. Mean PBmax (photosynthetic capacity) and αB (initial slope of the photosynthesis-irradiance curve) were 1.25±0.19 mgC. mgChla −1.h−1 and 0.042±0.009 mgC.mgChla −1.h−1.(μmol.m−2.s−1)−1 respectively. The mean index of photoadaptation,I k, was 32.2±4.0 μmol.m−2.s−1 and photoinhibition was found in all cases. Primary production was integrated to the critical depth (Z cr) at each production station and ranged from 15.6 to 41.5 mgC.m−2.d−1. It appears that, other than grazing intensity, the relationship between the critical depth and the mixing depth (Z mix) is an important factor as, ultimately, light availability due both to the late season and growing sea ice cover severely limits production during the austral autumn.  相似文献   

14.
The polychaete Nereis falsa Quatrefages, 1866 is present in the area of El Kala National Park on the East coast of Algeria. Field investigations were carried out from January to December 2007 to characterize the populations’ reproductive cycle, secondary production and dynamics. Reproduction followed the atokous type, and spawning occured from mid-June to the end of August/early September when sea temperature was highest (20–23°C). The diameter of mature oocytes was approximately 180 μm. Mean lifespan was estimated to about one year. In 2007, the mean density was 11.27 ind. m−2 with a minimum of 7.83 ind. m−2 in April and a maximum of 14.5 ind. m−2 in February. The mean annual biomass was 1.36 g m−2 (fresh weight) with a minimum of 0.86 g m−2 in December and a maximum of 2.00 g m−2 in June. The population consisted of two cohorts distinguishable from size frequency distributions. One cohort corresponded to the recruitment of 2006 and the other appeared during the study period in September 2007. The annual production of N. falsa was 1.45 g m−2 year−1, and the production/biomass ratio was 1.07 year−1.  相似文献   

15.
Commercial farming of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura in China and South Korea in the sea depends on three sources of seedlings: holdfast-derived regenerated seedlings, young plants from wild population and zygote-derived seedlings. Like many successfully farmed seaweed species, the sustainable development of Hizikia farming will rely on a stable supply of artificial seedlings via sexual reproduction under controlled conditions. However, the high rate of detachment of seedlings after transfer to open sea is one of the main obstacles, and has limited large-scale application of zygote-derived seedlings. To seek the optimal condition for growing seedlings on substratum in land-based tanks for avoidance of detachment in this investigation, young seedlings were grown in both outdoor tanks exposed directly to sunlight and in indoor raceway tanks in reduced, filtered sunlight. Results showed that young seedlings, immediately after fertilization, could withstand a daily fluctuation of direct solar irradiance up to a level of 1800 μmol photons m−2 s−1, and maintained a faster growth rate than seedlings grown in indoor tanks. Detailed experiments by use of chlorophyll fluorescence measurements further demonstrated that the overnight (12 h) recovery of optimal fluorescence quantum yield (Fv/Fm) of seedlings after 1 h treatment at 40°C was 98%, and the 48 h recovery of Fv/Fm of seedlings after 1 h exposure to 1800 μmol m−2 s−1 was 92%. Forty-one-day-old seedlings showed no significant decrease of optimal fluorescence quantum yield at salinity ranging from 30 to 5 ppt for a treatment up to 17 h. Six-hour desiccation treatment did not have any influence on the optimal fluorescence quantum yield. Exposure to 18 mmol L−1 sodium hypochlorite for 10 min did not damage the PSII efficiency, and thus could be used to remove epiphytic algae. The strong tolerance of young seedlings to high temperature, high irradiance, low salinity and desiccation found in this investigation supports the view that mass production of Hizikia seedlings should be performed in ambient light and temperature instead of in shaded greenhouse tanks.  相似文献   

16.
The above-ground accumulation of N,N uptake and litter quality resulting from improved or deteriorated availability of water and nutrients in a 25 year old Norway spruce stand in SW Sweden (as part of the Skogaby project) is presented. Treatment include irrigation; artificial drought; ammonium sulphate addition; N-free-fertilisation and irrigation with liquid fertilisers including a complete set of nutrients according to the Ingested principle (fertigation). At start of the experiment the stand contained 86.5 t dry mass and 352 kg N ha−1. The following three years the annual N uptake in untreated trees was 32 kg N ha−1 to be compared with the annual N throughfall of 17 kg ha−1. Simultaneously, the treatment with ammonium sulphate and liquid fertilisation resulted in 48 and 56 kg ha−1 y−1, respectively, in treatment specific N-uptake following an application of 100 kg N ha−1 y−1. Addition of a N-free fertiliser resulted in improved N-uptake by 19 kg N ha−1 y−1 and irrigation by 10 kg N ha−1 y−1, compared to control. A linear relation between total above-ground dry mass production and N-uptake was found for trees growing with similar water availability. Dry mass production increased with increased water availability given the same N-uptake. It is concluded that the studied stand this far is not N saturated', as N fertilisation resulted in both increased N uptake and increased growth. Addition of a N-free-fertiliser resulted in increased uptake of N compared to the control, indicating an increased mineralisation rate or uptake capacity of the root system. The linear relation between N uptake and biomass production shows that at this study site N is a highly limiting factor for growth.  相似文献   

17.
Gayralia K.L. Vinogr. is a monostromatic green alga of commercial importance in the southern Brazil, and its cultivation is being considered. This paper reports some basic aspects of the biology of this poorly known genus. Two populations of Gayralia spp., from outer and inner sectors of Paranaguá Bay, showed an asexual life history with a distinct pattern of thallus ontogeny. In one population (Gayralia sp. 1), zooids developed an expanded monostromatic blade directly, while in the other (Gayralia sp. 2) zooids produced an intermediate saccate stage, before giving rise to a monostromatic blade. Thalli of the two species differ in size and in cell diameter. The effects of temperature (16–30°C), irradiance (50–100 μmol photons m−2 s−1), and salinity (5–40 psu) on the growth of both populations were assessed. Plantlets of Gayralia sp. 1 from in vitro cultures showed a broader tolerance to all salinity and irradiance levels tested, with the highest growth rate (GR; mean 17% day−1) at 21.5°C and 100 μmol photons m−2 s−1. Plantlets of Gayralia sp. 1 collected during the winter in the field showed higher GR, ranging from 5% day−1 to 7.5% day−1 in salinities from 20 to 40 psu, and 2.0% day−1 and 4.3% day−1 for plantlets collected during the summer. Gayralia sp. 2 from the field showed highest GR at salinity of 15 psu. These results suggest distinct physiological responses of the two species, in accordance with their distribution: Gayralia sp. 2 is limited to the inner areas of the estuary, while Gayralia sp. 1 grows in outer areas, where salinity values are higher than 20 psu. These data indicate that Gayralia sp. 1 has a higher potential for aquaculture than Gayralia sp. 2 due to its larger thalli, higher GR, and wider tolerance to environmental variations.  相似文献   

18.
Reserve lipids of microalgae are promising for biodiesel production. However, optimization of cultivation conditions for both biomass yield and lipid production of microalgae is a contradictory problem because required conditions for both targets are different. In this study, a two-stage cultivation strategy is proposed to enhance lipid production of the microalga Nannochloropsis oculata. Biomass growth and lipid production were carried out in two separate and non-interacting stages. In first-stage cultivation, microalgae were cultivated in optimal conditions for cell growth. Then, microalgae were harvested and transferred into a growth-limited environment, thus enhancing lipid production of microalgae. Here, optimization of the lipid production stage (second stage) with respect to different levels of inoculum concentration, salinity of culture broth, and intensity of irradiance was performed. The results show that irradiance exhibits a significant influence on lipid production. The highest lipid productivity of 0.324 g L−1 day−1 was obtained with an inoculum concentration of 2.3 g L−1, a salinity of 35 g L−1, and an irradiance of 500 μmol photons m−2 s−1. The final yield of lipid obtained from the two-stage process was 2.82-times higher than that from traditional single-stage batch cultivation systems.  相似文献   

19.
Outdoor tank cultivation of several Porphyra (nori) species was carried out from late November 2002 through early May 2003 using 40 L (with a surface of 0.25 m2), 600 L (1 m2), and 24,000 L (30 m2) fiberglass or PVC tanks provided with continuous aeration and seawater flow. Sexual and asexual spores produced from cultured conchocelis and frozen thalli in the laboratory, respectively, were subsequently grown to produce young fronds (ca. 5-10 cm) in an average time of 8 weeks. Growth in outdoor tanks and ponds was possible for a period of up to 20 weeks (i.e. growth season), with yields above 100 g FW m−2d−1occurring during 12-14 weeks from late December through late March, when seawater temperatures were below 20 C. These yields correlated with the species and depended on the type of tanks in which the algae were cultivated, with the highest yields observed for Porphyra sp. and Porphyra yezoensis when fertilized twice a week with NH4 Cl and NaH2 PO4in 40 L tanks. Calculations of productivity for an entire growth season based on ≥ 100 g FW m−2d−1yields exceed the average productivities using seeded nets in open sea, for all Porphyra species tested (0.96-4.06 kg DW m−2 season−1vs. 0.7-1.0 kg DW m−2of net season−1). Therefore, tank cultivation of Porphyra can offer an additional source of nori biomass to international markets. Land-based tank cultivation also offers an environmentally friendly practice that allows for the manipulation of growth conditions to enrich seaweeds with specific, valuable chemicals such as protein and minerals.  相似文献   

20.
Samples of an angiosperm species, nine lichen species and a terrestrial alga, were collected from a variety of Antarctic terrestrial habitats, and were analysed for C and N stable isotope composition. Collections were made along natural gradients, the marine gradient, running from the sea coast inland and the moisture gradient, determined by melt water and precipitation runoff, and running towards the sea coast. Considerable variation in stable isotope ratios was found; δ13C values ranged between −16 and −32‰ and δ15N values between −23 and +23‰ The variation in stable carbon isotope ratios could be attributed in part to species specific differences, but differences in water availability also played a role, as was shown for the terrestrial alga Prasiola crispa and the lichen species Usnea antarctica. The differences in the isotope ratios of nitrogen could be retraced to the origin of nitrogen: marine or terrestrial. The nitrogen stable isotope ratios were influenced by both the marine gradient from the sea inland and the melt water and precipitation flow running in the opposite direction, towards the sea. This was shown for the lichen species Turgidosculum complicatulum and the angiosperm species Deschampsia antarctica. The variation in the C and N stable isotope ratios can be used to determine sources and pathways of N and changes in the water availability in Antarctic terrestrial ecosystems. Contrary to earlier reports the use of stable N isotope ratios is possible in this case because of the relative simplicity of the structure of the Antarctic terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号