首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of simian virus 40 (SV40) with base substitutions at or near the origin of replication of the viral genome have been constructed by bisulfite mutagenesis at the BglI restriction site of SV40 DNA, followed by transfection of cells with the BglI-resistant (BglIr) DNA so generated. Based on plaque morphology at different temperatures, the resulting BglIr mutants could be classified into four-groups. Class I mutants (designated ar for “altered restriction”) were indistinguishable from wild-type SV40; class II mutants (designated shp for “sharp plaque”) produced small, sharp-edged plaques; class III mutants (designated sp for “small plaque”) produced small plaques at 32 °C, 37 °C and 40 °C; and class IV mutants (designated cs for “cold sensitive”) produced small plaques at 32 °C and wild-type plaques at 37 °C and 40 °C. That the altered plaque morphology of sp and cs mutants was related to mutation at the BglI restriction site was demonstrated by co-reversion to wild-type of the plaque phenotype and BglI sensitivity. The nucleotide sequence around the original BglI site was determined in the DNA from one mutant of each class. In each case a different base-pair substitution was found, at a site outside sequences coding for SV40 proteins. When rates of replication of mutant DNAs were measured during productive infection, ar mutant DNA was synthesized at a rate comparable to that of wild-type SV40 DNA, shp mutant DNA was made at a rate exceeding that of wild-type, sp mutant DNA was synthesized at a lower rate than that of wild type. and cs mutant DNA synthesis was reduced at 32 °C, but about the same as the wild-type rate at 40 °C. These patterns of mutant DNA synthesis were unaltered in cells co-infected with mutant and wild-type virus, i.e. the defects in DNA synthesis were not trans-complementable. We conclude that the defective mutants have single base-pair changes in a cis element that determines the rate of viral DNA replication, presumably within the origin signal itself.  相似文献   

2.
The lagging strand DNA synthesis of the Escherichia coli bacterial chromosome and plasmids is thought to be initiated by the mobile promotor, the primosome. This primosome is assembled at a specific site on single-stranded DNA. This process is initiated by the interaction of one of the at least seven components, the n' protein, with this site. Indeed n' protein activator sites are found in the plasmids Col E1 and pBR322. To investigate the in vivo function of these n' protein sites, deletion derivates of pBR322 were constructed in which the n' protein sites are removed. The deletion plasmids show no change in stability and only threefold reduction in copy number compared to pBR322. Using a transduction system for single-stranded plasmid DNA it was shown that no other specific initiation signals for lagging strand DNA synthesis were present in the deletion plasmids. It was concluded that the n' protein activator sites in pBR322 are not essential for its DNA replication in vivo.  相似文献   

3.
The R1 origin region contains many symmetrical DNA sequence elements which allow the formation of complex secondary structures. A 218-bp in vivo deletion in a cloned R1 origin fragment removes most of them. As this deletion was never observed in plasmids containing all R1 replication functions, it was introduced by BglI in vitro recombination into the `basic replicon' of R1 cloned into pBR322. The recombinant plasmid with the 218-bp deletion and its derivatives unambiguously show that the deleted symmetrical elements are not absolutely essential for R1 replication as was previously assumed though they seem to determine a more efficient origin function. Likewise, a hypothetical protein of a mol. wt. of 14 000 daltons, the major part of which would be encoded by the deleted sequences, does not seem to be of particular importance for R1-specific replication. This is the first report of an alteration in the origin region of an IncFII plasmid which affects plasmid replication without abolishing it completely.  相似文献   

4.
5.
H Takahashi  H Saito 《Plasmid》1982,8(1):29-35
Transduction of plasmid pBR322 by cytosine-substituted T4 phages has been studied. Three T4 phage mutants which substitute cytosine for all of hydroxymethylcytosine residues in the DNA, were shown to transduce pBR322 at frequencies of 2 × 10?2 to 4 × 10?3 transductants per singly infected cell. Also, three T4 phage strains which partially substitute cytosine for hydroxymethylcytosine, transduced pBR322 at frequencies of 2 × 10?3 to 2 × 10?4. The transduction frequencies of pBR322 we attained are at least 10-fold higher than those reported by G. G. Wilson, K. Young, and G. J. Edlin (1979, Nature (London)280, 80–82). We found that multiplicity of infection in preparation of the transducing phage is the most important factor affecting the frequency of pBR322 transduction. When a lysate made at a multiplicity of infection ranging from 0.5 to 0.05 was used as the donor phage, transduction frequency of pBR322 was 10- to 40-fold higher than that of high-m.o.i. lysate. The transduction frequency was not affected by either restriction systems or amber suppressors of the recipient cells. However, no pBR322-containing transductant was obtained when either recA or polA mutants were used as the recipients. DNA from T4dC phage containing pBR322-transducing particles was analyzed on agarose gel electrophoresis after cleavage with restriction endonucleases. It was suggested that the pBR322 DNA in the T4dC phage particles exists as head-to-tail concatemers.  相似文献   

6.
The replication pattern of the plasmid pBR322 was examined in the dnaA mutants of Escherichia coli. The rate of pBR322 DNA synthesis is markedly decreased after dnaA cells are shifted to the restrictive temperature of 42 degrees C. However, addition of rifampicin (RIF) to cultures of dnaA strains incubated at 42 degrees C after a lag of 90 min results in a burst of pBR322 synthesis. This RIF-induced pBR322 replication remains dependent on DNA polymerase I activity. Efficient plasmid pBR322 replication is observed at 42 degrees C in the double mutant dnaA46cos bearing an intragenic suppressor of dnaA46. Though replication of pBR322 in dnaA46cos growing at 42 degrees C is initially sensitive to RIF plasmid synthesis is restored after 90 min incubation in the presence of the drug. RIF-induced replication of the plasmid pBR327, lacking the rriB site implicated in RIF-resistant synthesis of the L strand of ColE1-like plasmids (Nomura and Ray 1981; Zipursky and Marians 1981), was observed also in dnaA46 at 42 degrees C.  相似文献   

7.
Summary The histidine utilization (hut) operons of Klebsiella aerogenes were cloned into pBR322. The hut genes are wholly contained on a 7.9 kilobase pair fragment bounded by HindIII restriction sites and expression of hut is independent of the orientation of the fragment with respect to pBR322. A restriction map locating the 27 cleavage sites within hut for the enzymes, HindIII, PvuII, SalI, BglII, KpnI, PstI, SmaI, AvaI, and BamHI was deduced. Several of the cleavage sites for the enzymes HaeIII and HinfI were also mapped. A set of deletion plasmids was isolated by removing various restriction fragments from the original plasmid. These deletions were characterized and were used to assist in mapping restriction sites. This physical characterization of hut DNA opens the way for genetic and molecular analysis of the regulation of hut gene expression in vitro as well as in vivo.  相似文献   

8.
Replication of polyoma plasmid recombinants in mouse cells   总被引:6,自引:0,他引:6  
A series of pBR322 recombinants containing the intact early region and origin of replication of polyoma were constructed and tested for their ability to replicate in permissive mouse cells. During the first 60 hours after transfection of these plasmids into mouse cells there was an accumulation of material similar to that observed with non-cloned polyoma DNA, though none of the plasmids replicated up to as high a copy number as non-cloned polyoma DNA. The mouse-replicated plasmid DNAs had undergone changes in their methylation patterns consistent with their having been propagated in eukaryotic cells. They could be recovered efficiently by transfection back into Escherichia coli, and the structure of the recovered plasmids indicated that at least small plasmids were faithfully replicated in mouse cells.  相似文献   

9.
The stringent response causes inhibition of replication of plasmid pBR322 in amino acid-starved Escherichia coli cells whereas in relaxed mutants the replication of this plasmid proceeds for several hours. On the basis of density shift experiments and pulse-labelling experiments we showed that most of the pBR322 molecules begin replication during the relaxed response and the rate of plasmid DNA synthesis in unstarved and isoleucine-starved relA ] bacteria is similar. We found that the Rom function plays a key role in the stringent control of plasmid pBR322 replication, as insertional inactivation of the rom gene causes amplification of pBR322rom in both relA and relA + strains during amino acid starvation. Moreover, pUC19, which is a pBR322-derived plasmid lacking the rom gene, behaves like pBR322rom , whereas introduction of the rom gene into the pUC19 replicon drives it into the pBR322 mode of replication in amino acid-starved bacteria. A model for the regulation of pBR322 plasmid DNA replication by Rom protein in amino acid-starved Escherichia coli strains is proposed.  相似文献   

10.
H Bierne  S D Ehrlich    B Michel 《The EMBO journal》1991,10(9):2699-2705
Hybrids composed of phage M13, plasmid pBR322 and the termination signal of Escherichia coli chromosome replication terB were used to show that arrest of DNA synthesis creates a very efficient deletion hot spot. Up to 80% of deletions occurring in these hybrids had one deletion end-point at terB provided that (i) terB was oriented to arrest M13 and pBR322 leading strand synthesis; and (ii) the host cells contained the Tus protein necessary for arresting DNA synthesis at terB. The position of terB and the flanking sequences had little effect on deletion hot spot activity. About 90% of the deletions at terB ended 5-6 nucleotides in front of the major replication arrest site. We propose two models to account for deletion formation and speculate that many genome rearrangements may be due to the pausing of DNA replication.  相似文献   

11.
Summary The recombinant plasmid pRK101 carrying the complete replication origin of the antibiotic resistance factor R1 suffers frequently a deletion of 218 base pairs, removing parts or all of the origin sequence. This deletion seems to occur always when the Pst-E fragment carrying the replication origin is inserted into the cloning vector pBR322 in an orientation where the direction of R1 replication is the same as that of the vector plasmid and frequently when it is inserted in the opposite direction. DNA sequence analysis around the junction site generated by the deletion in three independently isolated deletion mutants reveals that the deletion occurs at a specific site, namely the end of a 22 bp sequence which is repeated almost identically at the other end of a segment of 197 bp. During the deletion one repeat unit is removed whereas the other is retained. The DNA sequence included by the two repeats contains high symmetric structures, i.e. inverted repeats, direct repeats and palindromes which may represent regulatory sites of the origin.  相似文献   

12.
pBR322 DNA, linearized by lysis of an oxolinic acid-treated culture of Escherichia coli strain DK6recA- (pBR322) with sodium dodecyl sulfate, was purified, treated with DNA polymerase in the presence of the four deoxynucleoside triphosphates, and ligated to DNA linkers containing the XhoI recognition sequence. Most of the drug-resistant colonies resulting from transformation of E. coli with this material bore plasmids that appeared by restriction enzyme analysis to differ from pBR322 only by the introduction of an XhoI site. The XhoI sites in plasmids from 93 transformants were distributed unevenly around the pBR322 map. Maxam-Gilbert DNA sequence analysis of 36 of these plasmids, labeled at the 5' termini of the XhoI sites, revealed that 29 of them contained, in addition to the XhoI linker, a duplication of four base-pairs of the pBR322 sequence surrounding the linker. Therefore, oxolinic acid-induced linearization must have resulted in 5'-terminal extensions of four bases, the configuration known to result from oxolinic acid-induced DNA cleavage by DNA gyrase in vitro. The sequence data thus allowed the determination of the precise point at which linearization occurred, apparently by the abortion of a gyrase-DNA covalent intermediate that existed in vivo. When the 19 different sites of the 29 plasmids were compared, the following set of rules could be derived: (formula; see text) where N is any nucleotide, R is a purine, and Y is a pyrimidine. Cleavage occurred at the line between the eighth and ninth positions from the left. The parenthetical G and T were preferred secondarily to T and G, respectively, whereas T and G in the 13th position from the left were equally preferred. Several of these rules are similar to those proposed previously based on several in vitro gyrase cleavage sites. Some of our rules show dyad symmetry around the axis midway between the cleavage points in the two strands, while others are distinctly asymmetric.  相似文献   

13.
pBR322 plasmid DNA was treated with methylene blue plus visible light (MB-light) and tested for transformation efficiency in Escherichia coli mutants defective in either formamidopyrimidine-DNA glycosylase (Fpg protein) and/or UvrABC endonuclease. The survival of pBR322 DNA treated with MB-light was not significantly reduced when transformed into either fpg-1 or uvrA single mutants compared with that in the wild-type strain. In contrast, the survival of MB-light-treated pBR322 DNA was greatly reduced in the fpg-1 uvrA double mutant. The synergistic effect of these two mutations was not observed in transformation experiments using pBR322 DNA treated with methyl methanesulfonate, UV light at 254 nm, or ionizing radiation. In vitro experiments showed that MB-light-treated pBR322 DNA is a substrate for the Fpg protein and UvrABC endonuclease. The number of sites sensitive to cleavage by either Fpg protein or UvrABC endonuclease was 10-fold greater than the number of apurinic-apyrimidinic sites indicated as Nfo protein (endonuclease IR)-sensitive sites. Seven Fpg protein-sensitive sites per PBR322 molecule were required to produce a lethal hit when transformed into the uvrA fpg-1 mutant. These results suggest that MB-light induces DNA base modifications which are lethal and that these modifications are repaired by Fpg protein and UvrABC endonuclease in vivo and in vitro. Therefore, one of the physiological functions of Fpg protein might be to repair DNA base damage induced by photosensitizers and light.  相似文献   

14.
15.
Plasmid DNA of molecular weight 6.8 × 106 was isolated from Streptomyces kasugaensis MB273. The plasmid DNA showed a single CsCl-ethidium bromide density gradient centrifugation, in neutral sucrose gradient centrifugation, and in agarose gel electrophoresis. When this DNA was digested with BamHI or SalI endonucleases, an unexpected number of fragments were found on agarose gel electrophoresis. Molecular weight summation of fragments obtained from double restriction enzyme digestions suggested that the plasmid DNA was a mixture of two different plasmids. This was confirmed by constructing recombinant plasmids between S. kasugaensis plasmid DNA and pBR322, and then by isolating two plasmids after SalI endonuclease treatment followed by sucrose gradient centrifugation. One of the plasmids (pSK1) had a single recognition site for BamHI, EcoRI, and SalI, and three sites for BglII. The other plasmid (pSK2) had a single recognition site for EcoRI and BglII, two recognition sites for BamHI, and no cleavage site for SalI. The cleavage maps of these plasmids were constructed using several restriction endonucleases.  相似文献   

16.
L M Fisher  H A Barot    M E Cullen 《The EMBO journal》1986,5(6):1411-1418
DNA gyrase catalyses DNA supercoiling by making a transient double-stranded DNA break within its 120-150 bp binding site on DNA. Addition of the inhibitor oxolinic acid to the reaction followed by detergent traps a covalent enzyme-DNA intermediate inducing sequence-specific DNA cleavage and revealing potential sites of gyrase action on DNA. We have used site-directed mutagenesis to examine the interaction of Escherichia coli gyrase with its major cleavage site in plasmid pBR322. Point mutations have been identified within a short region encompassing the site of DNA scission that reduce or abolish gyrase cleavage in vitro. Mapping of gyrase cleavage sites in vivo reveals that the pBR322 site has the same structure as seen in vitro and is similarly sensitive to specific point changes. The mutagenesis results demonstrate conclusively that a major determinant for gyrase cleavage resides at the break site itself and agree broadly with consensus sequence studies. The gyrase cleavage sequence alone is not a good substrate, however, and requires one or other arm of flanking DNA for efficient DNA breakage. These results are discussed in relation to the mechanism and structure of the gyrase complex.  相似文献   

17.
A procedure for extensive deletion mutagenesis of DNA using the uracil repair system is exemplified by reconstruction of the pBR322 replication regulatory region cloned into M13tg131. By means of an oligonucleotide primer the 116-nucleotide fragment was excised and four nucleotides were introduced to form a BglII restriction site. Use of the uracil repair selection provided a 30-fold increase in the deletion mutagenesis efficiency.  相似文献   

18.
19.
Hybrid plasmids were constructed in vitro by linking the Inc P-1 broad host range plasmid RK2 to the colicinogenic plasmid ColE1 at their EcoRI endonuclease cleavage sites. These plasmids were found to be immune to colicin E1, non-colicin-producing, and to exhibit all the characteristics of RK2 including self-transmissibility. These joint replicons have a copy number of 5 to 7 per chromosome which is typical of RK2, but not ColE1. Unlike ColE1, the plasmids will not replicate in the presence of chloramphenicol and are maintained in DNA polymerase I mutants of Escherichia coli. In addition, only RK2 incompatibility is expressed, although functional ColE1 can be rescued from the hybrids by EcoRI cleavage. This suppression of ColE1 copy number and incompatibility was found to be a unique effect of plasmid size on ColE1 properties. However, the inhibition of ColE1 or ColE1-like plasmid replication in chloramphenicol-treated cells is a specific effect of RK2 or segments of RK2 (Cri+ phenotype). This phenomenon is not a function of plasmid size and requires covalent linkage of RK2 DNA to ColE1. A specific region of RK2 (50.4 to 56.4 × 103 base-pairs) cloned in the ColE1-like plasmid pBR313 was shown to carry the genetic determinant(s) for expression of the Cri+ phenotype.  相似文献   

20.
A DNA sequence essential for the R64drd11 + ColK-mediated conjugal transfer of pBR322 has been located in a 540 bp HaeIII fragment (HaeIII-2) between the vegetative origin of replication and the tetracycline resistance (Tcr) gene of this vector. The pBR322 derivatives pBR327 and pBR328 lack this DNA sequence and are not mobilized by conjugation. Two derivatives of pBR328 were constructed by re-inserting the HaeIII-2 fragment in both orientations into the chloramphenicol-resistance gene of the same vector. One orientation of the HaeIII-2 fragment permitted mobilization by conjugation while the opposite orientation prevented mobilization. Further examination of pBR322 and derivatives revealed that the region between the origin of replication and Tcr gene also plays a role in regulating plasmid copy number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号