首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galactose oxidase is a fungal enzyme which is known to oxidize the C-6 hydroxymethyl of galactose and galactosamine to an aldehyde group. It has been widely used in glycoconjugate research, for example in the labeling of asialoglycoproteins. We have developed a simple affinity purification for galactose oxidase using melibiose-polyacrylamide. This affinity procedure was used to purify the enzyme from ammonium sulfate precipitates of culture filtrates of Dactylium dendroides. The material containing proteases and other contaminants is eluted in the buffer wash. The galactose oxidase is then specifically eluted from the column with buffer containing 0.1 M D-fucose or D-galactose. Using this procedure, the enzyme was also purified from commercial samples of galactose oxidase which contain high proteolytic activity.  相似文献   

2.
Galactose oxidase (E.C. 1.1.3.9) was covalently immobilized to chemically modified porous silica particles by reaction of the native enzyme with pendant benzoyl azide groups on the carrier. The enzyme loading on the carrier was 100-150 units per milliliter. The immobilized enzyme was incorporated into a hardware assembly suitable for the determination of galactose or lactose concentrations in complex biological fluids. The prototype instrument as described is suitable for continuous, on-line monitoring or discrete sample analysis. Reaction conditions can be readily provided which maintain global first order kinetics within the reactor and strict linearity of the procedure over a wide range of sample concentrations. Auto-inactivation of the immobilized enzyme can be prevented by K3Fe(CN)6 and long-term reactor stability can be achieved by the periodic application of the reagent to the enzyme reactor in situ.  相似文献   

3.
Galactose oxidase is a metalloenzyme containing a single copper atom per molecule. The mechanism of action of galactose oxidase is studied in this paper by investigating substrate specificity and activation by peroxidase, and probing the copper site by electron spin resonance (ESR) spectroscopy. Line-shape simulation of ESR spectra are also reported and a comparison is made between observed and simulated spectra for galactose oxidase. A comparison is also reported for the enzyme from various commercial sources and enzyme isolated from a fungus in this laboratory. The results of this investigation suggest that the copper is in an environment of four in-plane nitrogens with axial symmetry.  相似文献   

4.
Galactose oxidase (EC 1.1.3.9) has been purified 140-fold by DEAE- and CM-cellulose chromatography from cultures of Polyporus circinatus. The enzyme has a molecular weight of 68,000 ± 3,000 as determined by sedimentation equilibrium, sodium dodecyl sulfate-acrylamide gel electrophoresis, Sephadex G-150 chromatography, and osmometry. Galactose oxidase is a single-chain protein which does not self-associate. Charge isozymes of the enzyme are detected by ion-exchange chromatography and gel electrophoresis. The amino acid composition determined herein is significantly different from that previously reported (Kelly-Falcoz, F., Greenberg, H., And Horecker, B. L. (1965) J. Biol. Chem.240, 2966–2970). The enzyme contains 1% by weight of neutral carbohydrate.Galactose oxidase contains 1 g-atom of copper per 70,000 g of protein. The metal does not contribute to the electrophoretic or isozymic properties of the protein. However, the sedimentation coefficients of the holo- and apoenzymes, 4.76S and 4.83S, respectively, do suggest that small differences in protein conformation accompany the removal of the copper from the holoenzyme.Attempted sulfhydryl group titration of galactose oxidase shows that the holoenzyme is resistant to denaturation. However, in β-mercaptoethanol-guanidine HCl 5 half-cystine residues are titrated in the apoenzyme. On a dry-weight basis, the E1cm1% value for galactose oxidase at 280 nm is 15.4. Galactose oxidase has an isoelectric point above pH 10 which is a probable source of some of its anomalous behavior in physical measurements and enzyme-activity determinations.  相似文献   

5.
Galactose oxidase preparations are obtained from Fusarium graminearum IMV-F-N 1060 immobilized on aminoorganosilochromes activated by cyanuron chloride and 2.4-toluylene diizocyanate. The immobilized preparations were studied for their selective action on different carbohydrate substrates and for the pH-medium dependence of the obtained preparation activity. Potassium ferricyanide is established to have an activating effect on the immobilized enzyme. It is shown that the immobilized galactose oxidase preparations may be used for the analysis of galactose and lactose.  相似文献   

6.
Galactose oxidase from Dactyllium dendroides was purified and immobilised on a carbon electrode in a redox polymer network of a polyvinylpyridine, partially N-complexed with osmiumbis(bipyridine)chloride (POsEA). The current density of the electrodes depended on the concentration of phosphate elution buffer. By additional crosslinking with a 1% glutaraldehyde solution in 50 mM phosphate buffer, pH 7.0, an electrode with an initial current density of 0.8 mA/cm2 was obtained. Operational half life times were in the order of 1.2 h. The affinity of the immobilized enzyme for galactose,lactose, raffinose, glycerol and dihydroxyaceton was higher than described in literature for the enzyme in solution. Optimal temperature for the enzyme electrode was 30°C. The pH optimum for the immobilized enzyme was higher than for the enzyme in solution.  相似文献   

7.
Galactose oxidase is a copper metalloenzyme containing a novel protein-derived redox cofactor in its active site, formed by cross-linking two residues, Cys228 and Tyr272. Previous studies have shown that formation of the tyrosyl-cysteine (Tyr-Cys) cofactor is a self-processing step requiring only copper and dioxygen. We have investigated the biogenesis of cofactor-containing galactose oxidase from pregalactose oxidase lacking the Tyr-Cys cross-link but having a fully processed N-terminal sequence, using both Cu(I) and Cu(II). Mature galactose oxidase forms rapidly following exposure of a pregalactose oxidase-Cu(I) complex to dioxygen (t(1/2) = 3.9s at pH7). In contrast, when Cu(II) is used in place of Cu(I) the maturation process requires several hours (t(1/2) = 5.1 h). EDTA prevents reaction of pregalactose oxidase with Cu(II) but does not interfere with the Cu(I)-dependent biogenesis reaction. The yield of cross-link corresponds to the amount of copper added, although a fraction of the pregalactose oxidase protein is unable to undergo this cross-linking reaction. The latter component, which may have an altered conformation, does not interfere with analysis of cofactor biogenesis at low copper loading. The biogenesis product has been quantitatively characterized, and mechanistic studies have been developed for the Cu(I)-dependent reaction, which forms oxidized, mature galactose oxidase and requires two molecules of O2. Transient kinetics studies of the biogenesis reaction have revealed a pH sensitivity that appears to reflect ionization of a protein group (pKa = 7.3) at intermediate pH resulting in a rate acceleration and protonation of an early oxygenated intermediate at lower pH competing with commitment to cofactor formation. These spectroscopic, kinetic, and biochemical results lead to new insights into the biogenesis mechanism.  相似文献   

8.
Depletion of macrophages from human peripheral blood mononuclear cells (PBMC) caused a marked decrease in galactose oxidase and sodium periodate, but not a calcium ionophore, stimulated Interferon-gamma (IFN-gamma) production. Reconstitution of such depleted cultures with galactose oxidase treated macrophages, but not lymphocytes, restored IFN-gamma levels to those of control nonfractionated PBMC. Thus, galactose oxidase seemed to act on macrophages which in turn stimulated lymphocyte production of IFN-gamma. Unlike human cells which have terminal galactose residues on glycoproteins, murine cell glycoproteins terminate their oligosaccharide component in the order N-acetyl-neuraminic acid followed by D-galactose, N-acetyl-glucosamine, and glycoprotein. Galactose oxidase or sodium periodate only activated murine macrophages to stimulate lymphocyte IFN-gamma production after exposing D-galactose residues by the removal of the terminal N-acetyl-neuraminic acid residues with neuraminidase. Removal of such exposed terminal galactose residues with beta-galactosidase inhibited the effect of galactose oxidase on murine macrophages. Taken together, these results strongly suggest that oxidation of terminal galactose residues on macrophages is the initial site of action of galactose oxidase and sodium periodate. Studies with Boyden chambers have shown that galactose oxidase-treated macrophages released a soluble factor which stimulates lymphocyte production of IFN-gamma. Based on these findings, it appears that the oxidation of terminal galactose residues on the surface of macrophages leads to the induction and transmission of a soluble signal for lymphocyte production of IFN-gamma.  相似文献   

9.
The interaction of galactose oxidase with native and desialylated glycophorin A was studies by oxidizing human erythrocytes and globoside/phospholipid vesicles with the enzyme. Oxidation of the glycolipid was improved in the presence of vesicle-incorporationted glycophorin A. Although galactose oxidase is a very basic protein, it was not adsorbed on native human erythrocytes. Instead, neuraminidase-treated cells bound a substantial amount of galactose oxidase, but the enzyme seemed to be released into the buffer when desialylated glycoproteins had been oxidized.Abbreviation PBS 0.01 M sodium phosphate-0.15 M NaCl, pH 7.4  相似文献   

10.
High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an alpha-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4x10(4) U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions.  相似文献   

11.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

12.
The micellar properties of mixtures of GM1 ganglioside and the non-ionic amphiphile Triton X-100 in 25 mM Na phosphate-5 mM di Na EDTA buffer (pH = 7.0) were investigated by quasielastic light scattering in a wide range of Triton/GM1 molar ratios and in the temperature range 15–37°C. These measurements: (a) provided evidence for the formation of mixed micelles; (b) allowed the determination of such parameters as the molecular weight and the hydrodynamic radius of the mixed micelles; (c) showed the occurrence of statistical aggregates of micelles with increasing temperature and micelle concentration. Galactose oxidase was chosen for studying the relation between enzyme activity and micellar properties. The action of the enzyme on GM1 was found to be strongly dependent on the micellar structure. In particular: (a) galactose oxidase acted very poorly on homogeneous GM1 micelles, while affecting mixed GM1/Triton X-100 micelles; (b) at fixed GM1 concentration the oxidation rate increased by enhancing Triton X-100 concentration and followed a biphasic kinetics with a break at a certain Triton X-100 concentration; (c) the formation of statistical micelle aggregates was followed by inhibition of the enzyme activity.  相似文献   

13.
Galactose repression of beta-galactosidase induction in Escherichia coli   总被引:4,自引:3,他引:1  
Beggs, William H. (University of Minnesota, Minneapolis), and Palmer Rogers. Galactose repression of beta-galactosidase induction in Escherichia coli. J. Bacteriol. 91:1869-1874. 1966.-Galactose repression of beta-galactosidase induction in Escherichia coli was investigated to determine whether the galactose molecule itself is the catabolite repressor of this enzyme system. Without exception, beta-galactosidase induction by cells grown in a synthetic salts medium with lactate or glycerol as the carbon source was more strongly repressed by glucose than by galactose. This relationship existed even when the organism was previously grown in the synthetic medium containing galactose as the source of carbon. Two observations suggested that the ability of galactose to repress beta-galactosidase formation by Escherichia coli depends directly upon the cells' capacity to catabolize galactose. First, galactose repression of beta-galactosidase synthesis was markedly enhanced in bacteria tested subsequent to gratuitous induction of the galactose-degrading enzymes with d-fucose. Second, galactose failed to exert a repressive effect on beta-galactosidase in a galactose-negative mutant lacking the first two enzymes involved in galactose catabolism. Glucose completely repressed enzyme formation in this mutant. This same mutant, into which the genes for inducible galactose utilization had been introduced previously by transduction, again exhibited galactose repression. Pyruvate was found to be at least as effective as galactose in repressing beta-galactosidase induction by cells grown in synthetic salts medium plus glycerol. It is concluded that the galactose molecule itself is not the catabolite repressor of beta-galactosidase, but that repression is exerted through some intermediate in galactose catabolism.  相似文献   

14.
Bovine skim milk galactosyltransferase (EC 2.4.1.22) retained its catalytic activity after partial enzymatic removal of sialic acid and galactose. Desialylated and degalactosylated galactosyltransferase was a galactosyl acceptor in the galactosyltransferase reaction. [14C]Galactose from UDP-[14C]galactose was incorporated into the carbohydrate-depleted galactosyltransferase by native galactosyltransferase. The results suggest that galactosyltransferase participates in the biosynthesis of its glycopeptides of the sialic acid-galactose-N-acetylglucosamine type.  相似文献   

15.
Galactose oxidase is a free radical metalloenzyme containing a novel metalloradical complex, comprised of a protein radical coordinated to a copper ion in the active site. The unusually stable protein radical is formed from the redox-active side chain of a cross-linked tyrosine residue (Tyr-Cys). Biochemical studies on galactose oxidase have revealed a new class of oxidation mechanisms based on this free radical coupled-copper catalytic motif, defining an emerging family of enzymes, the radical-copper oxidases. Isotope kinetics and substrate reaction profiling have provided insight into the elementary steps of substrate oxidation in these enzymes, complementing structural studies on their active site. Galactose oxidase is remarkable in the extent to which free radicals are involved in all aspects of the enzyme function: serving as a key feature of the active site structure, defining the characteristic reactivity of the complex, and directing the biogenesis of the Tyr-Cys cofactor during protein maturation.  相似文献   

16.
Galactose oxidase is a fungal enzyme which is known to oxidize the C-6 hydroxymethyl of galactose to an aldehyde group. When the products of a galactose oxidase-catalase treatment of raffinose were examined by gel filtration and ion exchange chromatography, we found that, in addition to the expected 6'-aldehydoraffinose, two other components were present. Of these two components, the major one was retained on a column of AG 1-X8 (formate), gave a positive carbazole reaction for uronic acid, and on paper chromatograms had a mobility identical with that of 6'-carboxyraffinose. The infrared spectrum of the compound showed a carbonyl absorbance at 1725 cm-1 and was distinguishable from the spectra of raffinose and 6'-aldehydoraffinose. These data showed that raffinose was partly converted to 6'-carboxyraffinose when treated with galactose oxidase and catalase. The conversion of [3H]raffinose to [3H]6'-carboxyraffinose increased gradually with time of oxidation from 22% at 6 h to 68% at 96 h. Results of other experiments provided evidence that this was an enzymic conversion and depended on the presence of galactose oxidase. The activities responsible for the formation of aldehyde and uronic acid could not be separated by affinity chromatography, gel electrophoresis, or ion exchange chromatography, indicating that the same enzyme is responsible for both activities. Treatment of galactose, melibiose, and stachyose with galactose oxidase and catalase also resulted in the formation of the corresponding uronic acids. These studies indicate that galactose oxidase not only converts the C-6 hydroxymethyl group of galactose to an aldehyde group, but also catalyzes further oxidation to the carboxyl group.  相似文献   

17.
The kinetics and action mechanism of the galactose oxidase from Fusarium graminearum were studied. pH-optimum of the enzyme activity and stability was 7.0, the activity and stability of the galactose oxidase being decreased at any other values of pH. The enzyme is destabilized at acidic pH that is connected with protonization of its ionogenic group with pK 4.7. The temperature optimum of the galactose oxidase is 35 degrees C. When studying the enzyme thermoinactivation, it was found that at temperatures below 30 degrees C the energy of activation of denaturation was about 40 kcal/mole and at temperatures ranging from 30 to 70 degrees C - 13 kcal/mole. On the basis of the data obtained it was concluded that a low-temperature form of the galactose oxidase, possessing a higher energy of activation of denaturation, is more active than a high-temperature form. The value of Km for the enzyme in respect to galactose was 0.19 M, and the value of Vmax = 360 mumole/min per g of the preparation.  相似文献   

18.
We have used directed evolution methods to express a fungal enzyme, galactose oxidase (GOase), in functional form in Escherichia coli. The evolved enzymes retain the activity and substrate specificity of the native fungal oxidase, but are more thermostable, are expressed at a much higher level (up to 10.8 mg/l of purified GOase), and have reduced negative charge compared to wild type, all properties which are expected to facilitate applications and further evolution of the enzyme. Spectroscopic characterization of the recombinant enzymes reveals a tyrosyl radical of comparable stability to the native GOase from Fusarium.  相似文献   

19.
《FEBS letters》1994,350(2-3):219-222
The exposure of GM1 molecular species present in the native ganglioside, carrying C18:1 or C20:1 long-chain bases (LCB), to Dactylium dendroides galactose oxidase was studied. When native GM1 (49.3% C18:1 and 50.7% C20:1 LCB, respectively), was inserted in dipalmitoylphosphatidylcholine vesicles and partially oxidized (10%), the proportion of C18:1 and C20:1 species in the oxidized GM1 was 59.6% and 40.4%, respectively, suggesting a preferential action of the enzyme on the shorter species. The Vmax of the enzyme was higher on C18:1 GM1 than on C20:1 GM1. The molecular species were affected without any preference after partial (10%) oxidation of GM1 incorporated in egg phosphatidylcholine vesicles or in micellar form. These data indicate that the exposure of the terminal galactose moiety of GM1 ganglioside to galactose oxidase is affected by the ganglioside ceramide composition as well as the phospholipid environment, that presumably determine the distribution (molecular dispersion, segregation) of the ganglioside within the membrane.  相似文献   

20.
Stigmatella aurantiaca is a gram-negative bacterium which forms, under conditions of starvation in a multicellular process, characteristic three-dimensional structures: the fruiting bodies. For studying this complex process, mutants impaired in fruiting body formation have been induced by transposon insertion with a Tn5-derived transposon. The gene affected (fbfB) in one of the mutants (AP182) was studied further. Inactivation of fbfB results in mutants which form only clumps during starvation instead of wild-type fruiting bodies. This mutant phenotype can be partially rescued, if cells of mutants impaired in fbfB function are mixed with those of some independent mutants defective in fruiting before starvation. The fbfB gene is expressed about 14 h after induction of fruiting body formation as determined by measuring β-galactosidase activity in a merodiploid strain harboring the wild-type gene and an fbfB-Δtrp-lacZ fusion gene or by Northern (RNA) analysis with the Rhodobacter capsulatus pufBA fragment fused to fbfB as an indicator. The predicted polypeptide FbfB has a molecular mass of 57.8 kDa and shows a significant homology to the galactose oxidase (GaoA) of the fungus Dactylium dendroides. Galactose oxidase catalyzes the oxidation of galactose and primary alcohols to the corresponding aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号