首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ciliary epithelium of the eye secretes the aqueous humor. Itis a double epithelium arranged so that the apical surfaces of thenonpigmented ciliary epithelial (NPCE) and pigmented ciliary epithelial(PCE) cells face each other and the basolateral membranes face theinside of the eye and the blood, respectively. We have investigated thevolume responses of both single cells and coupled pairs from thistissue to osmotic challenge. Both NPCE and PCE cells undergo regulatoryvolume increase (RVI) and decrease (RVD) when exposed to hyper- andhyposmotic solution, respectively. In hyposmotic solution single cellsswell and return to their original volumes within ~3 min. Innonpigmented cells RVD could be inhibited by blockers ofvolume-activated Clchannels [tamoxifen (100%) > quinidine (87%) > DIDS (84%) > 5-nitro-2-(3-phenylpropylamino)benzoic acid (80%) > SITS(58%)] and K+ channels[Ba2+(31%)]. However, in PCE cells these inhibitors andadditionally tetraethylammonium andGd3+ were without effect. Onlybumetanide, an inhibitor ofNa+-K+-2Clcotransport, was found to have any effect on RVD in PCE cells. NPCE-PCEcell coupled pairs also underwent RVD, but with altered kinetics. Theonset of RVD of the PCE cell in a pair occurred 80 s before that ofthe NPCE cell, and the peak swell was reduced. This is consistent withfluid movement from the PCE to the NPCE cell. The effect of thevolume-activated Cl channelinhibitor tamoxifen was to eliminate this difference in the times ofonset of RVD in coupled cell pairs and to inhibit RVD in both the NPCEand PCE cells partially. On the basis of these observations we suggestthat fluid is transferred from the PCE to the NPCE cell in coupledpairs during cell swelling and the subsequent RVD. Furthermore, wespeculate that reciprocal RVI-RVD could underlie aqueous humor secretion.

  相似文献   

2.
睫状体色素上皮细胞容积激活性氯电流   总被引:5,自引:0,他引:5  
Chen LX  Wang LW 《生理学报》2000,52(5):421-426
为研究睫状体色素上皮 (pigmentedciliaryepithelial,PCE)细胞容积激活性Cl-电流的特性 ,用膜片箝全细胞记录技术记录了猪的低渗液诱发的容积激活性Cl-电流。此电流外向占优势 ,几乎没有时间依赖性失活 ,电流 电压曲线显示此电流反转电位 (- 6 3± 0 5mV)很接近氯离子平衡电位的计算值 (ECl=0mV)。电流的激活依赖于细胞内ATP ,细胞外ATP抑制外向电流和内向电流 ,但外向电流抑制率大于内向电流抑制率 (92 %比 74% ,P <0 0 1)。氯离子通道阻断剂tamoxifen抑制外向电流和内向电流 ,两个抑制率几乎相等 (85 %比 87% ,P >0 0 5 )。此电流特性与其他类型细胞的P糖蛋白相关电流很相似。结果提示PCE细胞容积激活性Cl-电流的形成可能与P糖蛋白有关  相似文献   

3.
The functional coupling of the ciliaryepithelium was studied in isolated pairs (couplets) of pigmentedciliary epithelial (PCE) and nonpigmented ciliary epithelial (NPCE)cells using the whole cell patch clamp and the fluorescent dye luciferyellow. One cell of the pair (usually the NPCE cell of a NPCE-PCE cell couplet) was accessed with a 2-5 M electrode, containing1-2 mM lucifer yellow, in the whole cell configuration of thepatch clamp. After voltage-clamp experiments were completed, cells were viewed under a fluorescent microscope to confirm that the cells werecoupled. The electrical coupling of the cells was also studied bycalculating the capacitance (using the time-domain technique), assuminga "supercell" model for coupled cells. The mean capacitance ofcoupled pairs was 79.8 ± 4.3 (SE) pF(n = 47) compared with single cellcapacitances of 36.8 ± 3.4 pF (n = 10) for PCE cells and 38.1 ± 3.1 pF(n = 15) for NPCE cells. Octanol,carbachol (CCh), and raised extracellularCa2+ concentration([Ca2+]o)all caused uncoupling in pairs (couplets) of coupled NPCE and PCEcells. At room temperature (22-24°C), the capacitance of thecouplets decreased from 70.5 ± 8.0 to 48.0 ± 5.2 pF(n = 5) when exposed to octanol (1 mM), from 73.8 ± 9.2 to 43.2 ± 9.5 pF(n = 4) when exposed to CCh (100 µM), and from 80.5 ± 6.7 to 49.9 ± 7.8 pF(n = 4) when exposed to 10 mM[Ca2+]o.The response to CCh was dose dependent; at higher temperatures of34-37°C, 10 µM CCh caused a 38% reduction in capacitance,from 53.7 ± 9.7 to 33.5 ± 3.3 pF(n = 7) with a half-time of 249 s, and100 µM CCh caused a 49% reduction in capacitance, from 51.3 ± 5.6 to 26.0 ± 2.4 pF (n = 7) witha half-time of 124 s. After pairs uncoupled and the uncoupling agentwas washed out, the cell pairs often exhibited an increase incapacitance that we interpreted as "recoupling" or a reopening ofthe gap junctional communication pathway; the half-time for thisprocess was 729 s after uncoupling with 100 µM CCh and 211 s afteruncoupling with 10 µM CCh. This interpretation was confirmedoptically by the spread of lucifer yellow into both cells of anuncoupled pair with a time course corresponding to the increase inelectrical coupling. The controllable coupling of ciliary epithelialcells extends the idea of a functional syncytium involved in activetransport. PCE cells take up solute and water from the blood, whichthen cross to NPCE cells via gap junctions and from there are secretedinto the posterior chamber of the eye. Modulation of the couplingbetween NPCE and PCE cells may provide a mechanism to controlsecretion.

  相似文献   

4.
The rate of aqueous humor formation sequentially across the pigmented (PE) and nonpigmented (NPE) ciliary epithelial cell layers may not be uniform over the epithelial surface. Because of the tissue's small size and complex geometry, this possibility cannot be readily tested by conventional techniques. Rabbit iris-ciliary bodies were divided, incubated, quick-frozen, cryosectioned, and freeze-dried for electron probe X-ray microanalysis of the elemental contents of the PE and NPE cells. We confirmed that preincubation with ouabain to block Na(+),K(+)-ATPase increases Na(+) and decreases K(+) contents far more anteriorly than posteriorly. The anterior and posterior regions were the iridial portion of the primary ciliary processes and the pars plicata, respectively. Following interruption of gap junctions with heptanol, ouabain produced smaller changes in anterior PE cells, possibly reflecting higher Na(+) or K(+) permeability of anterior NPE cells. Inhibiting Na(+) entry selectively with amiloride, benzamil, or dimethylamiloride reduced anterior effects of ouabain by approximately 50%. Regional dependence of net secretion was also assessed with hypotonic stress, which stimulates ciliary epithelial cell regulatory volume decrease (RVD) and net Cl(-) secretion. In contrast to ouabain's actions, the RVD was far more marked posteriorly than anteriorly. These results suggest that 1) enhanced Na(+) reabsorption anteriorly, likely through Na(+) channels and Na(+)/H(+) exchange, mediates the regional dependence of ouabain's actions; and 2) secretion may proceed primarily posteriorly, with secondary processing and reabsorption anteriorly. Stimulation of anterior reabsorption might provide a novel strategy for reducing net secretion.  相似文献   

5.
Aqueous humor is secreted by the bilayered ciliary epithelium. Solutes and water enter the pigmented ciliary epithelial (PE) cell layer, cross gap junctions into the nonpigmented ciliary epithelial (NPE) cell layer, and are released into the aqueous humor. Electrical measurements suggest that heptanol reduces transepithelial ion movement by interrupting PE-NPE communication and that gap junctions may be a regulatory site of aqueous humor formation. Several lines of evidence also suggest that net ciliary epithelial transport is strongly region dependent. Divided rabbit iris-ciliary bodies were incubated in chambers under control and experimental conditions, quick-frozen, cryosectioned, and freeze-dried. Elemental intracellular contents of NPE and PE cells were determined by electron probe X-ray microanalysis. With or without heptanol, ouabain produced concentration- and time-dependent changes more markedly in anterior than in posterior epithelium. Without heptanol, there were considerable cell-to-cell variations in Na gain and K loss. However, contiguous NPE and PE cells displayed similar changes, even when nearby cell pairs were little changed by ouabain in aqueous, stromal, or both reservoirs. In contrast, with heptanol present, ouabain added to aqueous or both reservoirs produced much larger changes in NPE than in PE cells. The results indicate that 1) heptanol indeed interrupts PE-NPE junctions, providing an opportunity for electron microprobe analysis of the sidedness of modification of ciliary epithelial secretion; 2) Na and K undergo faster turnover in anterior than in posterior epithelium; and 3) PE-NPE gap junctions differ from PE-PE and NPE-NPE junctions in permitting ionic equilibration between adjoining ouabain-stressed cells. pigmented ciliary epithelial cells; nonpigmented ciliary epithelial cells; gap junctions; aqueous humor; Na+/K+ exchange pump; rabbit iris-ciliary body  相似文献   

6.
We investigatedthe relationship between pICln,the volume-activated Clcurrent, and volume regulation in native bovine nonpigmented ciliaryepithelial (NPCE) cells. Immunofluorescence studies demonstrated thepresence of pICln protein in theNPCE cells. Exposure to hypotonic solution activated aCl current and inducedregulatory volume decrease (RVD) in freshly isolated bovine NPCE cells.Three antisense oligonucleotides complementary to humanpICln mRNA were used in theexperiments. The antisense oligonucleotides were taken up by the cellsin a dose-dependent manner. The antisense oligonucleotides, designed tobe complementary to the initiation codon region of the humanpICln mRNA, "knocked down"the pICln proteinimmunofluorescence, delayed the activation of volume-activatedCl current, diminished thevalue of the current, and reduced the ability of the cells to volumeregulate. We conclude that pICln is involved in the activation pathway of the volume-activated Cl current and RVDfollowing hypotonic swelling.

  相似文献   

7.
Early study of transepithelial salt transfer focused on Cl(-) and not Na(+), partly because Cl(-) was readily measureable. The advent of flame photometry and tracer techniques brought Na(+) to the fore, especially since short-circuited frog skin (Rana temporaria) produces baseline net movement of Na(+) and not of Cl(-). Zadunaisky was among the first to describe what is currently termed secondary active Cl(-) transport, helping stimulate interest in Cl(-) handling by other tissues, notably the thick ascending limb of the loop of Henle important in renal counter-current multiplication. More recently, molecules responsible for electroneutral and electrogenic Cl(-) transfer have been cloned, and specific diseases resulting from their faulty expression have been identified. The clinical importance of transepithelial Cl(-) transfer is illustrated by studies of aqueous humor formation by the eye's bilayered ciliary epithelium. NaCl is taken up from the stroma by the pigmented ciliary epithelial (PE) layer, diffuses through gap junctions into the nonpigmented ciliary epithelial (NPE) layer, and is released into the aqueous humor largely through Na(+) pumps and Cl(-) channels. ATP released by NPE cells can be ecto-enzymatically metabolized to adenosine. Adenosine can mediate paracrine/autocrine stimulation of Cl(-) channels and aqueous humor secretion by occupying A(3) adenosine receptors (ARs). A(3)AR agonists indeed elevate, and A(3)AR antagonists lower, intraocular pressure (IOP) in wild-type mice. A(3)AR knockout mice have low IOP and their responses to A(3)AR agonists and antagonists are blunted; this suggests that reducing Cl(-)-channel activity with A(3)AR antagonists may provide a novel approach for treating glaucoma.  相似文献   

8.
Abstract: The ocular ciliary epithelium, the site of aqueous humor secretion in the mammalian eye, is believed to play a key function in signaling mechanisms that regulate the rate of secretion, and thus intraocular pressure. One possible way of mediating these signaling functions is through neuropeptides and hormones secreted into the aqueous humor and acting on target tissues. We recently identified a cDNA clone sharing 100% identity with carboxypeptidase E (CPE), a neuropeptide-processing enzyme. Utilizing polymerase chain reaction, we further identified and characterized another processing enzyme, the peptidylglycine α-amidating monooxygenase (PAM), and the neuropeptide secretogranin II, a molecular marker restricted to neuroendocrine tissues. Using specific probes, we found that the nonpigmented ciliary epithelial cells express CPE, PAM, and secretogranin II mRNA, and protein. We also found that CPE and secretogranin II are abundant in aqueous humor. Treatment of cultured ciliary epithelial cells with veratridine and phorbol ester up-regulates CPE and PAM. Secretogranin II was found to be induced by veratridine, whereas phorbol ester had little effect, suggesting different mechanisms for secretion. The results demonstrate that secretogranin II, CPE, and PAM represent a specialized group of neuropeptide and neuropeptide-processing enzymes secreted by the ciliary epithelial cells which may confer to them neuroendocrine functions in cell-cell communication or cell signaling.  相似文献   

9.
Summary Cholera toxin reduces the rate of formation of aqueous humor in concentrations (10–11 M) that do not disturb the morphology of the aqueoushumor forming epithelial cells of the ciliary processes of the rabbit eye. The search for an endogenous mediator of aqueous-humor formation comparable to cholera toxin in its mode of operation prompted us to map the distribution of cell surface receptors for cholera toxin in the ciliary processes of the eyes of rabbits. Cytochemical studies were carried out with the use of conjugates of cholera toxin to fluorescein isothiocyanate (CT-FITC) and to horseradish peroxidase (CT-HRP), and of the B subunit of cholera toxin to horseradish peroxidase (B-HRP). Multiple fluorescent CT-FITC binding sites were observed on the outer nonpigmented epithelial layer near the crests of the processes. Processes incubated with CT-HRP in vitro showed surface staining of 30–40% of the nonpigmented epithelial cells. A prominent reaction product was observed along the basal and lateral plasma membranes of these cells. In vivo studies carried out after arterial infusion of B-HRP showed a reproducible dense reaction product between the apical surfaces of the pigmented epithelium (PE) and of the nonpigmented epithelium (NPE) facing each other. Aggregations of reaction product were observed with the electron microscope in the extracellular space between the apices of PE and NPE. The apical plasma membrane of the endothelium of the blood vessels near the crests of the ciliary processes was stained after either in vivo or in vitro exposure to peroxidase conjugates. These findings indicate that the cell-surface receptors which mediate the action of cholera toxin on aqueous humor formation are very likely localized in the apical plasma membranes of the epithelium of the ciliary processes.Supported in part by USPHS grant # EY-00237, the Connecticut Lions Eye Research Foundation, Inc., and Research to Prevent Blindness, Inc.  相似文献   

10.
The following is the abstract of the article discussed in thesubsequent letter:

Mitchell, Claire H., Jin Jun Zhang, Liwei Wang, andTim J. C. Jacob. Volume-sensitive chloride current in pigmented ciliary epithelial cells: role of phospholipases. Am. J. Physiol. 272 (Cell Physiol. 41): C212-C222, 1997.Thewhole cell recording technique was used to examine an outwardlyrectifying chloride current activated by hypotonic shock in bovinepigmented ciliary epithelial (PCE) cells. Removal of internal andexternal Ca2+ did not affect the activation of thesecurrents, but they were abolished by the phospholipase C inhibitorneomycin. The current was blocked by5-nitro-2-(3-phenylpropylamino)benzoic acid,4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, and4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) in avoltage-dependent manner, but tamoxifen, dideoxyforskolin, andquinidine did not affect it. This blocking profile differs from that ofthe volume-sensitive chloride channel in neighboring nonpigmentedciliary epithelial cells (Wu, J., J. J. Zhang, H. Koppel, and T. J. C. Jacob. J. Physiol. Lond. 491: 743-755, 1996), and thisdifference implies that the volume responses of the two cell types aremediated by different chloride channels (Jacob, T. J. C., and J. J. Zhang. J. Physiol. Lond. In press). Intracellular administration of guanosine 5'-O-(3-thiotriphosphate) (GTPS) to PCE cells induced a transient, time-independent, outwardly rectifying chloride current that closely resembled the current activated by hypotonic shock. DIDS produced a voltage-dependent blockof the GTPS-activated current similar to the block of the hypotonically activated current. Intracellular neomycin completely prevented activation of this current as did incubation of the cells incalphostin C, an inhibitor of protein kinase C (PKC). Removal ofCa2+ did not affect activation of the current by GTPSbut extended the duration of the response. Inhibition of phospholipaseA2 (PLA2) with p-bromophenacyl bromideprevented the activation of the hypotonically induced current and alsoinhibited the current once activated by hypotonic solution. Thefindings imply that the hypotonic response in PCE cells is mediated byboth phospholipase C (PLC) and PLA2. Both phospholipasesgenerate arachidonic acid, and, in addition, the PLC pathway regulatesthe PLA2 pathway via a PKC-dependent phosphorylation ofPLA2.

  相似文献   

11.
Ultrastructural localization of Na+,K+-ATPase in rat ciliary epithelium was investigated quantitatively by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of Na+,K+-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha-subunit of Na+,K+-ATPase in the ciliary body. Gold particles were found mainly on the basolateral surfaces of both the pigmented epithelial (PE) and nonpigmented epithelial (NPE) cells with an approximately twofold higher labeling density in the PE cells. A few gold particles were also found on the apical and ciliary channel surfaces of the PE cells, whereas no significant binding was found on the apical surfaces of the NPE cells. The basolateral surfaces of PE and NPE cells are markedly infolded and are much greater in area than the apical surfaces. This means that Na+,K+-ATPase is almost exclusively located on the basolateral surfaces of both the NPE and PE cells. We suggest that the Na+,K+-ATPase of both the NPE and PE cells play an important role in the formation of aqueous humor.  相似文献   

12.
OBJECTIVES: Previously it has been shown, that the volume-activated plasma membrane chloride channel is associated with regulatory volume decrease (RVD) of cells and may play an important role in control of cell proliferation. We have demonstrated that both expression of the channel and RVD capacity are actively regulated in the cell cycle. In this study, we aimed to further study the role of the volume-activated chloride current and RVD in cell cycle progression and overall in cell proliferation. MATERIALS AND METHODS: Whole-cell currents, RVD, cell cycle distribution, cell proliferation and cell viability were measured or detected with the patch-clamp technique, the cell image analysis technique, flow cytometry, the MTT assay and the trypan blue assay respectively, in nasopharyngeal carcinoma cells (CNE-2Z cells). RESULTS: The Cl- channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen, inhibit the volume-activated chloride current, RVD and proliferation of CNE-2Z cells in a dose-dependent manner. Analysis of relationships between the current, RVD and cell proliferation showed that both the current and RVD were positively correlated with cell proliferation. NPPB (100 microM) and tamoxifen (20 microM) did not significantly induce cell death, but inhibited cell proliferation, implying that the blockers may inhibit cell proliferation by affecting cell cycle progression. This was verified by the observation that tamoxifen (20 microM) and NPPB (100 microM) inhibited cell cycle progress and arrested cells at the G0/G1 phase boundary. CONCLUSIONS: Activity of the volume-activated chloride channel is one of the important factors that regulate the passage of cells through the G1 restriction point and that the Cl- current associated with RVD plays an important role in cell proliferation.  相似文献   

13.
The cell volume regulatory response following hypotonic shocks is often achieved by the coordinated activation of K(+) and Cl(-) channels. In this study, we investigate the identity of the K(+) and Cl(-) channels that mediate the regulatory volume decrease (RVD) in ciliated epithelial cells from murine trachea. RVD was inhibited by tamoxifen and 1,9-dideoxyforskolin, two agents that block swelling-activated Cl(-) channels. These data suggest that swelling-activated Cl(-) channels play an important role in cell volume regulation in murine tracheal epithelial cells. Ba(2+) and apamin, inhibitors of K(+) channels, were without effect on RVD, while tetraethylammoniun had little effect on RVD. In contrast, clofilium, an inhibitor of the KvLQT/IsK potassium channel complex potently inhibited RVD, suggesting a role for the KvLQT/IsK channel complex in cell volume regulation by tracheal epithelial cells. To investigate further the role of KvLQT/IsK channels in RVD, we used IsK knock-out mice. When exposed to hypotonic solutions, tracheal cells from IsK(+/+) mice underwent RVD, whereas cells from IsK(-/-) failed to recover their normal size. These data suggest that the IsK potassium subunit plays an important role in RVD in murine tracheal epithelial cells.  相似文献   

14.
鼻咽癌细胞ClC-3在细胞周期中的表达   总被引:1,自引:0,他引:1  
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatoryvolumedecrease,RVD)的关系.结果显示,CNE-2Z细胞表达ClC-3.ClC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性.G1期细胞的ClC-3表达水平较低而S期则较高,M期细胞的表达水平中等.在细胞周期中,ClC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比.上述观察结果提示,ClC-3可能参与细胞周期的调节,但CNE-2Z细胞中的ClC-3可能不是与RVD有关的氯通道.  相似文献   

15.
Summary Arachidonic acid inhibits the cell shrinkage observed in Ehrlich ascites tumor cells during regulatory volume decrease (RVD) or after addition of the Ca ionophore A23187 plus Ca. In Na-containing media, arachidonic acid increases cellular Na uptake under isotonic as well as under hypotonic conditions. Arachidonic acid also inhibits KCl and water loss following swelling in Na-free, hypotonic media even when a high K conductance has been ensured by addition of gramicidin. In isotonic, Na-free medium arachidonic acid inhibits A23187 + Ca-induced cell shrinkage in the absence but not in the presence of gramicidin. It is proposed that inhibition of RVD in hypotonic media by arachidonic acid is caused by reduction in the volume-induced Cl and K permeabilities as well as by an increase in Na permeability and that reduction in A23187 + Ca-induced cell shrinkage is due to a reduction in K permeability and an increase in Na permeability. The A23187 + Ca-activated Cl permeability in unaffected by arachidonic acid. PGE2 inhibits RVD in Na-containing, hypotonic media but not in Na-free, hypotonic media, indicating a PGE2-induced Na uptake. PGE2 has no effect on the volume-activated K and Cl permeabilities. LTB4, LTC4 and LTE4 inhibit RVD insignificantly in hypotonically swollen cells. LTD4, more-over, induces cell shrinkage in steady-state cells and accelerates the RVD following hypotonic exposure. The effect of LTD4 even reflects a stimulating effect on K and Cl transport pathways. Thus none of the leukotrienes show the inhibitory effect found for arachidonic acid on the K and Cl permeabilities. The RVD response in hypotonic, Na-free media is, on the other hand, also inhibited by addition of the unsaturated oleic, linoleic, linolenic and palmitoleic acid, even in the presence of the cationophor gramicidin. The saturated arachidic and stearic acid had no effect on RVD. It is, therefore, suggested that a minor part of the inhibitory effect of arachidonic acid on RVD in Na-containing media is via an increased synthesis of prostaglandins and that the major part of the arachidonic acid effect on RVD in Na-free media, and most probably also in Na-containing media, is due to the inhibition of the volume-induced K and Cl transport pathways, caused by a nonspecific detergent effect of an unsaturated fatty acid.  相似文献   

16.
鼻咽癌细胞CIC-3在细胞周期中的表达   总被引:5,自引:0,他引:5  
Wang LW  Chen LX  Jacob T 《生理学报》2004,56(2):230-236
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因CIC-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatory volume decrease,RVD)的关系。结果显示,CNE-2Z细胞表达CIC-3。CIC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性。G1期细胞的CIC-3表达水平较低而S期则较高,M期细胞的表达水平中等。在细胞周期中,CIC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比。上述观察结果提示,CIC-3可能参与细胞周期的调节,但CNE-2Z细胞中的CIC-3可能不是与RVD有关的氯通道。  相似文献   

17.
Cell volume regulation plays a vital role in many cell functions. Recent study indicates that both K(+) and Cl(-) channels are important for the regulatory volume decrease (RVD) of cholangiocarcinoma cells, but its physiological significance is unclear due to the tumorous nature of the cells used. This present study reports the RVD of normal mouse cholangiocytes by using freshly isolated bile duct cell clusters (BDCC). A relatively simple and practical method of measuring the cross-sectional area of BDCCs by quantitative videomicroscopy was used to indirectly measure their volumes. Mouse cholangiocytes exhibited RVD, which was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate, DIDS, and glibenclamide, suggesting its dependence on certain chloride channels, such as volume-activated chloride channels. It is also inhibited by barium chloride but not by tetraethylammonium chloride, indicating its dependence on certain potassium channels. However, cAMP agonists had no significant effect on the RVD of BDCCs. This indirect method described can be used to study the RVD of cholangiocytes from normal as well as genetically altered mouse livers.  相似文献   

18.
Summary We have examined the effect of alteration in cell shape on promoting differentiated morphology and physiology in cultured nonpigmented epithelial cells from the ciliary body. We have grown pure populations of nonpigmented cells on collagen gels released from the culture dish to create collagen rafts. Shortly after the gels were detached, the cells shrank in diameter and increased in height while they contracted the gel. Concurrently, the actin cytoskeleton reorganized to the cell cortex as found in vivo. After this differentiated morphology developed, large changes in intracellular Ca2+ could be elicited by simultaneous activation of acetylcholine and epinephrine or acetylcholine and somatostatin receptors as seen in intact tissue. Explant cultures of isolated nonpigmented cell layers maintained their actin distribution and also showed synergistic Ca2+ increases. Spread cells, grown on rigid substrates, had a disorganized cytoskeleton and rarely showed synergism. These data suggest that the mechanism underlying synergistic Ca2+ responses in the ciliary body is functional in nonpigmented cells grown on collagen rafts. In addition, this pathway appears to be sensitive to the disposition of the cell’s cytoarchitecture.  相似文献   

19.
The aqueous humor is formed by the bilayered ciliary epithelium. The pigmented ciliary epithelium (PE) faces the stroma and the nonpigmented ciliary epithelium (NPE) contacts the aqueous humor. Cl secretion likely limits the rate of aqueous humor formation. Many transport components underlying Cl secretion are known. Cl is taken up from the stroma into PE cells by electroneutral transporters, diffuses to the NPE cells through gap junctions and is released largely through Cl channels. Recent work suggests that significant Cl recycling occurs at both surfaces of the ciliary epithelium, providing the basis for modulation of net secretion. The PE-NPE cell couplet likely forms the fundamental unit of secretion; gap junctions within the PE and NPE cell layers are inadequate to maintain constancy of ionic composition throughout the epithelium under certain conditions. Although many hormones, drugs and signaling cascades are known to have effects, a persuasive model of the regulation of aqueous humor formation has not yet been developed. cAMP likely plays a central role, potentially both enhancing and reducing secretion by actions at both surfaces of the ciliary epithelium. Among other hormone receptors, A3 adenosine receptors likely alter intraocular pressure by regulating NPE-cell Cl channel activity. Recently, functional evidence for the regional variation in ciliary epithelial secretion has been demonstrated; the physiologic and pathophysiologic implications of this regional variation remain to be addressed.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

20.
鼻咽癌细胞CIC-3在细胞周期中的表达(英文)   总被引:1,自引:0,他引:1  
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮cNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatorly volume decrease,RVD)的关系。结果显示,CNE-2Z细胞表达CIC-3。C1C-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性。G1期细胞的C1C-3表达水平较低而S期则较高,M期细胞的表达水平中等。在细胞周期中,C1C-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比。上述观察结果提示,C1C-3可能参与细胞周期的调节,但CNE-2Z细胞中的C1C-3可能不是与RVD有关的氯通道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号