首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sprouty (Spry) inhibits signalling by receptor tyrosine kinases; however, the molecular mechanism underlying this function has not been defined. Here we show that after stimulation by growth factors Spry1 and Spry2 translocate to the plasma membrane and become phosphorylated on a conserved tyrosine. Next, they bind to the adaptor protein Grb2 and inhibit the recruitment of the Grb2-Sos complex either to the fibroblast growth factor receptor (FGFR) docking adaptor protein FRS2 or to Shp2. Membrane translocation of Spry is necessary for its phosphorylation, which is essential for its inhibitor activity. A tyrosine-phosphorylated octapeptide derived from mouse Spry2 inhibits Grb2 from binding FRS2, Shp2 or mouse Spry2 in vitro and blocks activation of the extracellular-signal-regulated kinase (ERK) in cells stimulated by growth factor. A non-phosphorylated Spry mutant cannot bind Grb2 and acts as a dominant negative, inducing prolonged activation of ERK in response to FGF and promoting the FGF-induced outgrowth of neurites in PC12 cells. Our findings suggest that Spry functions in a negative feedback mechanism in which its inhibitor activity is controlled rapidly and reversibly by post-translational mechanisms.  相似文献   

2.
Ubiquitylation of receptor tyrosine kinases (RTKs) regulates their trafficking and lysosomal degradation. The multidomain scaffolding protein intersectin 1 (ITSN1) is an important regulator of this process. ITSN1 stimulates ubiquitylation of the epidermal growth factor receptor (EGFR) through enhancing the activity of the Cbl E3 ubiquitin ligase. However, the precise mechanism through which ITSN1 enhances Cbl activity is unclear. Here, we demonstrate that ITSN1 interacts with and recruits the Shp2 tyrosine phosphatase to Spry2 to enhance its dephosphorylation, thereby disrupting the inhibitory effect of Spry2 on Cbl and enhancing EGFR ubiquitylation. In contrast, expression of a catalytically inactive Shp2 mutant reversed the effect of ITSN1 on Spry2 dephosphorylation and decreased Cbl-mediated EGFR ubiquitylation. In addition, disruption of ITSN1 binding to Spry2 through point mutation of the Pro-rich ITSN1 binding site in Spry2 resulted in decreased Shp2-Spry2 interaction and enhanced Spry2 tyrosine phosphorylation. This study demonstrates that ITSN1 enhances Cbl activity, in part, by modulating the interaction of Cbl with Spry2 through recruitment of Shp2 phosphatase to the Cbl-Spry2 complex. These findings reveal a new level of complexity in the regulation of RTKs by Cbl through ITSN1 binding with Shp2 and Spry2.  相似文献   

3.
Receptor tyrosine kinases (RTKs) play distinct roles in multiple biological systems. Many RTKs transmit similar signals, raising questions about how specificity is achieved. One potential mechanism for RTK specificity is control of the magnitude and kinetics of activation of downstream pathways. We have found that the protein tyrosine phosphatase Shp2 regulates the strength and duration of phosphatidylinositol 3'-kinase (PI3K) activation in the epidermal growth factor (EGF) receptor signaling pathway. Shp2 mutant fibroblasts exhibit increased association of the p85 subunit of PI3K with the scaffolding adapter Gab1 compared to that for wild-type (WT) fibroblasts or Shp2 mutant cells reconstituted with WT Shp2. Far-Western analysis suggests increased phosphorylation of p85 binding sites on Gab1. Gab1-associated PI3K activity is increased and PI3K-dependent downstream signals are enhanced in Shp2 mutant cells following EGF stimulation. Analogous results are obtained in fibroblasts inducibly expressing dominant-negative Shp2. Our results suggest that, in addition to its role as a positive component of the Ras-Erk pathway, Shp2 negatively regulates EGF-dependent PI3K activation by dephosphorylating Gab1 p85 binding sites, thereby terminating a previously proposed Gab1-PI3K positive feedback loop. Activation of PI3K-dependent pathways following stimulation by other growth factors is unaffected or decreased in Shp2 mutant cells. Thus, Shp2 regulates the kinetics and magnitude of RTK signaling in a receptor-specific manner.  相似文献   

4.
Genes of the Sprouty family (Spry1–4) are feedback inhibitors of receptor tyrosine kinase (RTK) signaling. As such, they restrain proliferation of many cell types and have been proposed as tumor-suppressor genes. Although their most widely accepted target is the Extracellular-regulated kinases (ERK) pathway, the mechanisms by which Spry proteins inhibit RTK signaling are poorly understood. In the present work, we describe a novel mechanism by which Spry1 restricts proliferation, independently of the ERK pathway. In vivo analysis of thyroid glands from Spry1 knockout mice reveals that Spry1 induces a senescence-associated secretory phenotype via activation of the NFκB pathway. Consistently, thyroids from Spry1 knockout mice are bigger and exhibit decreased markers of senescence including Ki67 labeling and senescence-associated β-galactosidase. Although such ‘escape'' from senescence is not sufficient to promote thyroid tumorigenesis in adult mice up to 5 months, the onset of Phosphatase and tensin homolog (Pten)-induced tumor formation is accelerated when Spry1 is concomitantly eliminated. Accordingly, we observe a reduction of SPRY1 levels in human thyroid malignancies when compared with non-tumoral tissue. We propose that Spry1 acts as a sensor of mitogenic activity that not only attenuates RTK signaling but also induces a cellular senescence response to avoid uncontrolled proliferation.  相似文献   

5.
It is well known that T cell differentiation and maturation in the thymus is tightly controlled at multiple checkpoints. However, the molecular mechanism for the control of this developmental program is not fully understood. A number of protein tyrosine kinases, such as Zap-70, Lck, and Fyn, have been shown to promote signals required for thymocyte development, whereas a tyrosine phosphatase Src homology domain-containing tyrosine phosphatase (Shp)1 has a negative effect in pre-TCR and TCR signaling. We show in this study that Shp2, a close relative of Shp1, plays a positive role in T cell development and functions. Lck-Cre-mediated deletion of Shp2 in the thymus resulted in a significant block in thymocyte differentiation/proliferation instructed by the pre-TCR at the beta selection step, and reduced expansion of CD4(+) T cells. Furthermore, mature Shp2(-/-) T cells showed decreased TCR signaling in vitro. Mechanistically, Shp2 acts to promote TCR signaling through the ERK pathway, with impaired activation of ERK kinase observed in Shp2(-/-) T cells. Thus, our results provide physiological evidence that Shp2 is a common signal transducer for pre-TCR and TCR in promoting T cell maturation and proliferation.  相似文献   

6.
The glial cell line-derived neurotrophic factor (GDNF)/RET tyrosine kinase signaling pathway plays crucial roles in the development of the enteric nervous system (ENS) and the kidney. Tyrosine 1062 (Y1062) in RET is an autophosphorylation residue that is responsible for the activation of the PI3K/AKT and RAS/MAPK signaling pathways. Mice lacking signaling via Ret Y1062 show renal hypoplasia and hypoganglionosis of the ENS although the phenotype is milder than the Gdnf- or Ret-deficient mice. Sprouty2 (Spry2) was found to be an antagonist for fibroblast growth factor receptor (FGFR) and acts as an inhibitory regulator of ERK activation. Spry2-deficient mice exhibit hearing loss and enteric nerve hyperplasia. In the present study, we generated Spry2-deficient and Ret Y1062F knock-in (tyrosine 1062 is replaced with phenylalanine) double mutant mice to see if abnormalities of the ENS and kidney, caused by loss of signaling via Ret Y1062, are rescued by a deficiency of Spry2. Double mutant mice showed significant recovery of ureteric bud branching and ENS development in the stomach. These results indicate that Spry2 regulates downstream signaling mediated by GDNF/RET signaling complex in vivo.  相似文献   

7.
Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction   总被引:6,自引:0,他引:6  
Intercellular signaling molecules and their receptors, whose expression must be tightly regulated in time and space, coordinate organogenesis. Regulators of intracellular signaling pathways provide an additional level of control. Here we report that loss of the receptor tyrosine kinase (RTK) antagonist, Sprouty1 (Spry1), causes defects in kidney development in mice. Spry1(-/-) embryos have supernumerary ureteric buds, resulting in the development of multiple ureters and multiplex kidneys. These defects are due to increased sensitivity of the Wolffian duct to GDNF/RET signaling, and reducing Gdnf gene dosage correspondingly rescues the Spry1 null phenotype. We conclude that the function of Spry1 is to modulate GDNF/RET signaling in the Wolffian duct, ensuring that kidney induction is restricted to a single site. These results demonstrate the importance of negative feedback regulation of RTK signaling during kidney induction and suggest that failures in feedback control may underlie some human congenital kidney malformations.  相似文献   

8.
Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser112 and Ser121, on Spry2. The phospho-Ser112/121 region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys48 on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.  相似文献   

9.
Hopper NA 《Genetics》2006,173(1):163-175
Previous genetic analysis has shown that dos/soc-1/Gab1 functions positively in receptor tyrosine kinase (RTK)-stimulated Ras/Map kinase signaling through the recruitment of csw/ptp-2/Shp2. Using sensitized assays in Caenorhabditis elegans for let-23/Egfr and daf-2/InsR (insulin receptor-like) signaling, it is shown that soc-1/Gab1 inhibits phospholipase C-gamma (PLCgamma) and phosphatidylinositol 3'-kinase (PI3K)-mediated signaling. Furthermore, as well as stimulating Ras/Map kinase signaling, soc-1/Gab1 stimulates a poorly defined signaling pathway that represses class 2 daf-2 phenotypes. In addition, it is shown that SOC-1 binds the C-terminal SH3 domain of SEM-5. This binding is likely to be functional as the sem-5(n2195)G201R mutation, which disrupts SOC-1 binding, behaves in a qualitatively similar manner to a soc-1 null allele in all assays for let-23/Egfr and daf-2/InsR signaling that were examined. Further genetic analysis suggests that ptp-2/Shp2 mediates the negative function of soc-1/Gab1 in PI3K-mediated signaling, as well as the positive function in Ras/Map kinase signaling. Other effectors of soc-1/Gab1 are likely to inhibit PLCgamma-mediated signaling and stimulate the poorly defined signaling pathway that represses class 2 daf-2 phenotypes. Thus, the recruitment of soc-1/Gab1, and its effectors, into the RTK-signaling complex modifies the cellular response by enhancing Ras/Map kinase signaling while inhibiting PI3K and PLCgamma-mediated signaling.  相似文献   

10.
Sprouty 2 (Spry2) acts as an inhibitor of receptor tyrosine kinase signaling in various cellular contexts. Interestingly, Spry2 also prevents the c-Cbl-induced degradation of epidermal growth factor receptor (EGFR). We compared human fibroblasts malignantly transformed by overexpression of H-Ras(V12) oncogene to their nontransformed parental cells and found that the malignant cells express a high level of Spry2. These cells also exhibited an increase in the level of EGFR compared with their precursor cells. We found that intact EGFR was required if H-Ras-transformed cells were to grow in the absence of exogenous growth factors or form large colonies in agarose. When we decreased expression of Spry2, using a Spry2-specific shRNA, the H-Ras(V12)-transformed fibroblasts could no longer form large colonies in agarose, grow in reduced levels of serum, or form tumors in athymic mice. The level of active H-Ras in these cells remained unaltered. A similar, but less pronounced, effect in tumor formation was observed when Spry2 was down-regulated in human patient-derived fibrosarcoma cell lines. In H-Ras-transformed cells Spry2 sustained the level and the downstream signaling activity of EGFR. In the parental, non-H-Ras-transformed fibroblasts, expression of Spry2 resulted in the inhibition of H-Ras and ERK activation, suggesting that the positive effect of Spry2 in tumor formation is specific to H-Ras transformation. Co-immunoprecipitation studies with H-Ras-transformed cells revealed that Spry2 and H-Ras interact and that H-Ras interacts with Spry2-binding partners, c-Cbl and CIN85, in a Spry2-dependent manner. These data show that Spry2 plays a critical role in the ability of H-Ras-transformed cells to form tumors in athymic mice.  相似文献   

11.
At the vertebrate neuromuscular junction (NMJ), postsynaptic aggregation of muscle acetylcholine receptors (AChRs) depends on the activation of MuSK, a muscle-specific tyrosine kinase that is stimulated by neural agrin and regulated by muscle-intrinsic tyrosine kinases and phosphatases. We recently reported that Shp2, a tyrosine phosphatase containing src homology two domains, suppressed MuSK-dependent AChR clustering in cultured myotubes, but how this effect of Shp2 is controlled has remained unclear. In this study, biochemical assays showed that agrin-treatment of C2 mouse myotubes enhanced the tyrosine phosphorylation of signal regulatory protein alpha1 (SIRPalpha1), a known activator of Shp2, and promoted SIRPalpha1's interaction with Shp2. Moreover, in situ experiments revealed that treatment of myotubes with the Shp2-selective inhibitor NSC-87877 increased spontaneous and agrin-induced AChR clustering, and that AChR clustering was also enhanced in myotubes ectopically expressing inactive (dominant-negative) Shp2; in contrast, AChR clustering was reduced in myotubes expressing constitutively active Shp2. Significantly, expression of truncated (nonShp2-binding) and full-length (Shp2-binding) forms of SIRPalpha1 in myotubes also increased and decreased AChR clustering, respectively, and coexpression of truncated SIRPalpha1 with active Shp2 and full-length SIRPalpha1 with inactive Shp2 reversed the actions of the exogenous Shp2 proteins on AChR clustering. These results suggest that SIRPalpha1 is a novel downstream target of MuSK that activates Shp2, which, in turn, suppresses AChR clustering. We propose that an inhibitory loop involving both tyrosine kinases and phosphatases sets the level of agrin/MuSK signaling and constrains it spatially to help generate high-density AChR clusters selectively at NMJs.  相似文献   

12.
Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16 nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.  相似文献   

13.
Sprouty (Spry) proteins function as inhibitors of receptor tyrosine kinase signaling mainly by interfering with the Ras/Raf/mitogen-activated protein kinase cascade, a pathway known to be frequently deregulated in human non-small cell lung cancer (NSCLC). In this study, we show a consistently lowered Spry2 expression in NSCLC when compared with the corresponding normal lung epithelium. Based on these findings, we investigated the influence of Spry2 expression on the malignant phenotype of NSCLC cells. Ectopic expression of Spry2 antagonized mitogen-activated protein kinase activity and inhibited cell migration in cell lines homozygous for K-Ras wild type, whereas in NSCLC cells expressing mutated K-Ras, Spry2 failed to diminish extracellular signal-regulated kinase (ERK) phosphorylation. Nonetheless, Spry2 significantly reduced cell proliferation in all investigated cell lines and blocked tumor formation in mice. Accordingly, a Spry2 mutant unable to inhibit ERK phosphorylation reduced cell proliferation significantly but less pronounced compared with the wild-type protein. Therefore, we conclude that Spry2 interferes with ERK phosphorylation and another yet unidentified pathway. Our results suggest that Spry2 plays a role as tumor suppressor in NSCLC by antagonizing receptor tyrosine kinase-induced signaling at different levels, indicating feasibility for the usage of Spry in targeted gene therapy of NSCLC.  相似文献   

14.
The Sprouty (Spry) proteins function as inhibitors of the Ras-ERK pathway downstream of various receptor tyrosine kinases. In this study, we have identified Tesk1 (testicular protein kinase 1) as a novel regulator of Spry2 function. Endogenous Tesk1 and Spry2 exist in a complex in cell lines and mouse tissues. Tesk1 coexpression relocalizes Spry2 to vesicles including endosomes, inhibiting its translocation to membrane ruffles upon growth factor stimulation. Independent of its kinase activity, Tesk1 binding leads to a loss of Spry2 function as an inhibitor of ERK phosphorylation and reverses inhibition of basic fibroblast growth factor (bFGF)- and nerve growth factor-induced neurite outgrowth in PC12 cells by Spry2. Furthermore, depletion of endogenous Tesk1 in PC12 cells leads to a reduction in neurite outgrowth induced by bFGF. Tesk1 nullifies the inhibitory effect of Spry2 by abrogating its interaction with the adaptor protein Grb2 and interfering with its serine dephosphorylation upon bFGF and FGF receptor 1 stimulation by impeding its binding to the catalytic subunit of protein phosphatase 2A. A construct of Tesk1 that binds to Spry2 but does not localize to the vesicles does not interfere with its function, highlighting the importance of subcellular localization of Tesk1 in this context. Conversely, Tesk1 does not affect interaction of Spry2 with the E3 ubiquitin ligase, c-Cbl, and consequently, does not affect its inhibition of Cbl-mediated ubiquitination of the epidermal growth factor receptor. By selectively modulating the downstream effects of Spry2, Tesk1 may thus serve as a molecular determinant of the signaling outcome.  相似文献   

15.
During development, many organs, including the kidney, lung and mammary gland, need to branch in a regulated manner to be functional. Multicellular branching involves changes in cell shape, proliferation and migration. Axonal branching, however, is a unicellular process that is mediated by changes in cell shape alone and as such appears very different to multicellular branching. Sprouty (Spry) family members are well-characterised negative regulators of Receptor tyrosine kinase (RTK) signalling. Knockout of Spry1, 2 and 4 in mouse result in branching defects in different organs, indicating an important role of RTK signalling in controlling branching pattern. We report here that Spry3, a previously uncharacterised member of the Spry family plays a role in axonal branching. We found that spry3 is expressed specifically in the trigeminal nerve and in spinal motor and sensory neurons in a Brain-derived neurotrophin factor (BDNF)-dependent manner. Knockdown of Spry3 expression causes an excess of axonal branching in spinal cord motoneurons in vivo. Furthermore, Spry3 inhibits the ability of BDNF to induce filopodia in Xenopus spinal cord neurons. Biochemically, we show that Spry3 represses calcium release downstream of BDNF signalling. Altogether, we have found that Spry3 plays an important role in the regulation of axonal branching of motoneurons in vivo, raising the possibility of unexpected conservation in the involvement of intracellular regulators of RTK signalling in multicellular and unicellular branching.  相似文献   

16.
Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal‐regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2+/? neuron cultures, whereas homozygous Spry2?/? neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2+/? mice recovered faster in motor but not sensory testing paradigms (Spry2?/? mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP‐43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2?/? mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4‐positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long‐distance axon regeneration in injured peripheral nerves. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 217–231, 2015  相似文献   

17.
Sprouty proteins are recently identified receptor tyrosine kinase (RTK) inhibitors potentially involved in many developmental processes. Here, we report that Sprouty proteins become tyrosine phosphorylated after growth factor treatment. We identified Tyr55 as a key residue for Sprouty2 phosphorylation and showed that phosphorylation was required for Sprouty2 to inhibit RTK signaling, because a mutant Sprouty2 lacking Tyr55 augmented signaling. We found that tyrosine phosphorylation of Sprouty2 affected neither its subcellular localization nor its interaction with Grb2, FRS2/SNT, or other Sprouty proteins. In contrast, Sprouty2 tyrosine phosphorylation was necessary for its binding to the Src homology 2-like domain of c-Cbl after fibroblast growth factor (FGF) stimulation. To determine whether c-Cbl was required for Sprouty2-dependent cellular events, Sprouty2 was introduced into c-Cbl-wild-type and -null fibroblasts. Sprouty2 efficiently inhibited FGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 in c-Cbl-null fibroblasts, thus indicating that the FGF-dependent binding of c-Cbl to Sprouty2 was dispensable for its inhibitory activity. However, c-Cbl mediates polyubiquitylation/proteasomal degradation of Sprouty2 in response to FGF. Last, using Src-family pharmacological inhibitors and dominant-negative Src, we showed that a Src-like kinase was required for tyrosine phosphorylation of Sprouty2 by growth factors. Thus, these data highlight a novel negative and positive regulatory loop that allows for the controlled, homeostatic inhibition of RTK signaling.  相似文献   

18.
Sprouty (Spry) proteins modulate signal transduction pathways elicited by receptor tyrosine kinases (RTK). Depending on cell type and the particular RTK, Spry proteins exert dual functions: They can either repress RTK-mediated signaling pathways, mainly by interfering with the Ras/Raf/mitogen-activated protein kinase pathway or sustaining RTK signal transduction, for example by sequestering the E3 ubiquitin-ligase c-Cbl and thus preventing ubiquitylation, internalization, and degradation of RTKs. Here, by the inducible expression of murine Spry4 in pancreatic beta cells, we have assessed the functional role of Spry proteins in the development of pancreatic islets of Langerhans in normal mice and in the Rip1Tag2 transgenic mouse model of beta-cell carcinogenesis. beta cell-specific expression of mSpry4 provokes a significant reduction in islet size, an increased number of alpha cells per islet area, and impaired islet cell type segregation. Functional analysis of islet cell differentiation in cultured PANC-1 cells shows that mSpry4 represses adhesion and migration of differentiating pancreatic endocrine cells, most likely by affecting the subcellular localization of the protein tyrosine phosphatase PTP1B. In contrast, transgenic expression of mSpry4 during beta-cell carcinogenesis does not significantly affect tumor outgrowth and progression to tumor malignancy. Rather, tumor cells seem to escape mSpry4 transgene expression.  相似文献   

19.
Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.  相似文献   

20.
The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-);Spry2(-/-) embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号