首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To have a PCR-based detection method for Xanthomonas axonopodis pv. citri (Xac) using primers designed in a specific region of its genome. METHODS AND RESULTS: A Xac-specific region was identified inside the rpf gene cluster of strain IAPAR 306 in an analysis of its complete genomic sequence. Two primers were designed, Xac01 and Xac02, which, when used in a standard PCR assay, direct the amplification of a 581 bp fragment from DNA of strains belonging to Xac from different regions around the world including unusual American and Asian strains. This product was not observed when DNA from strains of the closely related X. a. aurantifolli and X. a. citrumelo were used as templates. Extracts prepared from 28 xanthomonads of other species, and epiphytic bacteria isolated from citrus also failed to produce products with these primers. Amplification was obtained from cells grown in vitro, from extracts of both fresh and dried citrus canker lesions and from washes of inoculated but asymptomatic leaf surfaces. In sensitivity tests, this PCR technique detected as few as 100 cells. CONCLUSIONS: Primers Xac01 and Xac02 provide specific and sensitive detection of Xac in all citrus tissues where the pathogen is found. SIGNIFICANCE AND IMPACT OF THE STUDY: This PCR-based diagnostic test is suitable for monitoring asymptomatic plants in areas where the bacteria is endemic, in plant quarantine and regulatory situations, and also for obtaining an accurate diagnosis in a very short time. These are important characteristics for any assay to be used for the management of citrus canker disease.  相似文献   

2.
Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker, an economically important disease to world citrus industry. To monitor the infection process of Xac in different citrus plants, the enhanced green florescent protein (EGFP) visualizing system was constructed to visualize the propagation and localization in planta. First, the wild-type Xac was isolated from the diseased leaves of susceptible 'Bingtang' sweet orange, and then the isolated Xac was labeled with EGFP by triparental mating. After PCR identification, the growth kinetics and pathogenicity of the transformants were analyzed in comparison with the wild-type Xac. The EGFP-labeled bacteria were inoculated by spraying on the surface and infiltration in the mesophyll of 'Bingtang' sweet orange leaves. The bacterial cell multiplication and diffusion processes were observed directly under confocal laser scanning microscope at different intervals after inoculation. The results indicated that the EGFP-labeled Xac releasing clear green fluorescence light under fluorescent microscope showed the infection process and had the same pathogenicity as the wild type to citrus. Consequently, the labeled Xac demonstrated the ability as an efficient tool to monitor the pathogen infection.  相似文献   

3.
Li J  Wang N 《PloS one》2011,6(7):e21804
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and regulatory mechanism of biofilm formation.  相似文献   

4.
Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.  相似文献   

5.
6.
AIMS: To show the results of the detection of an EU quarantine organism, Xanthomonas axonopodis pv. citri (Xac), in citrus fruits imported from countries where this bacterium is present, using an integrated approach that includes isolation, pathogenicity assays and molecular techniques. METHODS AND RESULTS: Citrus fruits with canker-like symptoms, exported to Spain from South American countries were analysed by several methods. Bacterial isolation, three conventional polymerase chain reaction (PCR) protocols, and real-time PCR with SYBR Green or a TaqMan probe, were compared. Canker-like lesions were disrupted in PBS buffer, and the extract used for bacterial isolation and DNA extraction followed by PCR amplification. Canker lesions, identified by PCR, showed viable bacteria in eleven of fifteen fruit samples. In 16 out of 130 lesions analysed from these samples, Xac was isolated, and pathogenicity on grapefruit leaves confirmed. By real-time PCR, using SYBR green or a Taqman probe, Xac was detected in 58 and 80 lesions respectively. By conventional PCR the bacterium was detected in 39-52 lesions depending on the protocol employed. CONCLUSIONS: An integrated approach for reliable detection of Xac in lesions of fruit samples, employing several techniques and with real-time PCR using a TaqMan probe as the fastest and most sensitive screening method, has been established and validated and is proposed as a useful tool for the analysis of Xac on fresh fruits. SIGNIFICANCE AND IMPACT OF THE STUDY: This work faces up to the real threat of the importation of citrus fruits that can harbour quarantine bacteria and will be useful in diagnostic laboratories for the analysis of commercial fresh fruits from countries where citrus canker is present.  相似文献   

7.
Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co‐infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N‐terminal and C‐terminal regions and found that, although both regions elicited HR in nonhost plants, only the N‐terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain.  相似文献   

8.
段娇  刘阳  冯广达  杨恩  朱红惠 《微生物学报》2023,63(5):1944-1958
柑橘是我国第一大水果,柑橘溃疡病是导致柑橘产量和品质下降的最具破坏性细菌性病害之一,给柑橘产业造成了巨大的经济损失,严重阻碍了柑橘产业的可持续发展。微生物防治柑橘溃疡病具有安全、环保、高效等优点,是当前研究的热点。本文主要概述了柑橘溃疡病特征及其病原菌分类、分布,全面分析了柑橘溃疡病病原菌主要致病机理和协助致病机理;系统梳理了柑橘溃疡病生防微生物的多样性;重点总结了微生物通过产生活性物质、诱导激活植物免疫防御系统等防治柑橘溃疡病的作用机制;最后,我们提出了柑橘溃疡病微生物防治面临的挑战以及未来可能的解决途径,以期为柑橘产业的健康发展提供参考。  相似文献   

9.
Over the past decade, ancient genomics has been used in the study of various pathogens. In this context, herbarium specimens provide a precious source of dated and preserved DNA material, enabling a better understanding of plant disease emergences and pathogen evolutionary history. We report here the first historical genome of a crop bacterial pathogen, Xanthomonas citri pv. citri (Xci), obtained from an infected herbarium specimen dating back to 1937. Comparing the 1937 genome within a large set of modern genomes, we reconstructed their phylogenetic relationships and estimated evolutionary parameters using Bayesian tip-calibration inferences. The arrival of Xci in the South West Indian Ocean islands was dated to the 19th century, probably linked to human migrations following slavery abolishment. We also assessed the metagenomic community of the herbarium specimen, showed its authenticity using DNA damage patterns, and investigated its genomic features including functional SNPs and gene content, with a focus on virulence factors.  相似文献   

10.
Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker (CBC) and is a serious problem worldwide. Like CBC, several important diseases in other fruits, such as mango, pomegranate, and grape, are also caused by Xanthomonas pathovars that display remarkable specificity toward their hosts. While citrus and mango diseases were documented more than 100 years ago, the pomegranate and grape diseases have been known only since the 1950s and 1970s, respectively. Interestingly, diseases caused by all these pathovars were noted first in India. Our genome-based phylogenetic studies suggest that these diverse pathogens belong to a single species and these pathovars may be just a group of rapidly evolving strains. Furthermore, the recently reported pathovars, such as those infecting grape and pomegranate, form independent clonal lineages, while the citrus and mango pathovars that have been known for a long time form one clonal lineage. Such an understanding of their phylogenomic relationship has further allowed us to understand major and unique variations in the lineages that give rise to these pathovars. Whole-genome sequencing studies including ecological relatives from their putative country of origin has allowed us to understand the evolutionary history of Xac and other pathovars that infect fruits.  相似文献   

11.
Understanding the evolutionary history and potential of bacterial pathogens is critical to prevent the emergence of new infectious bacterial diseases. Xanthomonas axonopodis subsp. citri (Xac) (synonym X. citri subsp. citri), which causes citrus canker, is one of the hardest-fought plant bacterial pathogens in US history. Here, we sequenced 21 Xac strains (14 XacA, 3 XacA* and 4 XacAw) with different host ranges from North America and Asia and conducted comparative genomic and evolutionary analyses. Our analyses suggest that acquisition of beneficial genes and loss of detrimental genes most likely allowed XacA to infect a broader range of hosts as compared with XacAw and XacA*. Recombination was found to have occurred frequently on the relative ancient branches, but rarely on the young branches of the clonal genealogy. The ratio of recombination/mutation ρ/θ was 0.0790±0.0005, implying that the Xac population was clonal in structure. Positive selection has affected 14% (395 out of 2822) of core genes of the citrus canker-causing Xanthomonas. The genes affected are enriched in ‘carbohydrate transport and metabolism'' and ‘DNA replication, recombination and repair'' genes (P<0.05). Many genes related to virulence, especially genes involved in the type III secretion system and effectors, are affected by positive selection, further highlighting the contribution of positive selection to the evolution of citrus canker-causing Xanthomonas. Our results suggest that both metabolism and virulence genes provide advantages to endow XacA with higher virulence and a wider host range. Our analysis advances our understanding of the genomic basis of specialization by positive selection in bacterial evolution.  相似文献   

12.
pFL1 is a pUC9 derivative that contains a 572-bp EcoRI insert cloned from plasmid DNA of Xanthomonas campestris pv. citri XC62. The nucleotide sequence of pFL1 was determined, and the sequence information was used to design primers for application of the polymerase chain reaction (PCR) to the detection of X. campestris pv. citri, the causal agent of citrus bacterial canker disease. Seven 18-bp oligonucleotide primers were designed and tested with DNA from X. campestris pv. citri strains and other strains of X. campestris associated with Citrus spp. as templates in the PCR. Four primer pairs directed the amplification of target DNA from X. campestris pv. citri strains but not from strains of X. campestris associated with a different disease, citrus bacterial spot. Primer pair 2-3 directed the specific amplification of target DNA from pathotype A but not other pathotypes of X. campestris pv. citri. A pH 9.0 buffer that contained 1% Triton X-100 and 0.1% gelatin was absolutely required for the successful amplification of the target DNA, which was 61% G+C. Limits of detection after amplification and gel electrophoresis were 25 pg of purified target DNA and about 10 cells when Southern blots were made after gel electrophoresis and probed with biotinylated pFL1. This level of detection represents an increase in sensitivity of about 100-fold over that of dot blotting with the same hybridization probe. PCR products of the expected sizes were amplified from DNA extracted from 7-month-old lesions from which viable bacteria could not be isolated. These products were confirmed to be specific for X. campestris pv. citri by Southern blotting. This PCR-based detection protocol will be a useful addition to current methods of detection of this pathogen, which is currently the target of international quarantine measures.  相似文献   

13.
柑桔溃疡病生防细菌Bt8的研究   总被引:5,自引:0,他引:5  
柑桔溃疡病是中国柑桔的重要病害。从南宁柑桔园土壤中分离到1株对柑桔溃疡病菌具有强抑制力的细菌Bt8。根据Bt8菌株的形态1、6S rDNA序列分析以及生理生化特性,将其鉴定为鲍氏不动杆菌。Bt8菌株的抑菌效果受温度、pH及培养基等环境因素的影响。在温室条件下将该细菌悬浮液喷施到柑桔叶片上,获得了55.2%的病斑抑制效果。研究结果揭示了鲍氏不动杆菌在柑桔溃疡病田间防治上的潜能。  相似文献   

14.
Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.  相似文献   

15.
Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is a devastating bacterial disease threatening the citrus industry. Salicylic acid (SA) plays a key role in plant defense response to biotic stress, but information is scarce concerning the application of SA to enhancing Xac resistance. In the present research attempts were made to investigate how exogenous application of SA influenced canker disease outbreak in navel orange (Citrus sinensis). Exogenously applied SA at 0.25 mM significantly enhanced the endogenous free and bound SA, particularly the latter. Upon exposure to Xac, lower disease incidence rate and smaller lesion sites were observed in the samples pre-treated with SA, accompanied by repression of bacterial growth at the lesion sites. Concurrent with the augmented disease resistance, SA-treated leaves had higher H?O? level and smaller stomata apertures before or after Xac infection when compared with their counterparts pre-treated with water (control). SA treatment elevated the activities of phenylalanine ammonia-lyase and β-1,3-glucanase, but only the latter was higher in the SA-treated samples after Xac infection. In addition, mRNA levels of two pathogenesis-related genes, CsCHI and CsPR4A, were higher in the SA-treated samples relative to the control. Taken together, our results strongly suggest that the exogenously applied SA has evoked a cascade of physiological and molecular events that function singly or in concert to confer resistance to Xac invasion.  相似文献   

16.
17.
The Gram-negative bacterium Xanthomonas axonopodis pv. citri, the causal agent of citrus canker, is a major threat to the citrus industry worldwide. Although this is a leaf spot pathogen, it bears genes highly related to degradation of plant cell walls, which are typically found in plant pathogens that cause symptoms of tissue maceration. Little is known on Xac capacity to cause disease and hydrolyze cellulose. We investigated the contribution of various open reading frames on degradation of a cellulose compound by means of a global mutational assay to selectively screen for a defect in carboxymethyl cellulase (CMCase) secretion in X. axonopodis pv. citri. Screening on CMC agar revealed one mutant clone defective in extracellular glycanase activity, out of nearly 3,000 clones. The insertion was located in the xpsD gene, a component of the type II secretion system (T2SS) showing an influence in the ability of Xac to colonize tissues and hydrolyze cellulose. In summary, these data show for the first time, that X. axonopodis pv. citri is capable of hydrolyzing cellulose in a T2SS-dependent process. Furthermore, it was demonstrated that the ability to degrade cellulose contributes to the infection process as a whole.  相似文献   

18.
Twenty-four strains of Xanthomonas axonopodis pv. citri ( Xac ), the causal agent of bacterial canker of citrus, isolated from Mexican lime ( Citrus aurantifolia ) and lemon ( Citrus limon ) in southern Iran, were characterized phenotypically. Strains were all pathogenic on C. aurantifolia . Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis revealed slight differences in soluble protein profiles among the strains. Based on host range specificity and phenotypic characteristics, representative strains were differentiated into two groups of Asiatic (A) and atypical Asiatic (aA) forms. DNA fingerprinting analysis using Eco RI as the restriction endonuclease showed a negligible difference in restriction pattern between the two groups. On the basis of isozymic analysis, the two groups were distinct with respect to superoxide dismutase (SOD) and esterase (EST) banding patterns. Plasmid DNA profile analysis showed that the bacterial strains were different from each other in terms of plasmid number and molecular weight. Phage typing study revealed that most of group A strains were susceptible to Cp1 and/or Cp2 and some were resistant to both phage types including the strain in aA group. Bacteriocin production test indicated that there was a variation among Xac strains using different indicators for each bacteriocin producer. It is concluded that the Iranian strains of Xac are heterogeneous and constitute a subgroup(s) within the pathotype A.  相似文献   

19.
运用PCR方法扩增利用核糖体展示技术筛选的抗柑桔溃疡病菌(Xanthomonas axonopodis pv.citri,XAC)的单链抗体(ScFv95)基因片段,将单链抗体基因重组到原核表达载体pET30a( )中,构建单链抗体高效表达载体pET30a( )-XAC-ScFv。再将pET30a( )-XAC-ScFv质粒转化进大肠杆菌BL21(DE3)后诱导表达,并对表达产物进行纯化、复性及活性检测。获得了抗XAC单链抗体的高效表达蛋白,以包涵体形式存在的表达蛋白大小约32kDa。包涵体蛋白经过变性、纯化和复性后,初步获得有功能的单链抗体。同时用Biacore分析XAC-ScFv-95与XAC LPS作用,结果表明复性后的XAC-ScFv-95具有较高的亲和力,从而为柑桔溃疡病菌XAC的免疫诊断和防治研究提供了新的工具和途径。  相似文献   

20.
Telle S  Thines M 《PloS one》2008,3(10):e3584
During the past years an increasing number of studies have focussed on the use of herbarium specimens for molecular phylogenetic investigations and several comparative studies have been published. However, in the studies reported so far usually rather large amounts of material (typically around 100 mg) were sampled for DNA extraction. This equals an amount roughly equivalent to 8 cm(2) of a medium thick leaf. For investigating the phylogeny of plant pathogens, such large amounts of tissue are usually not available or would irretrievably damage the specimens. Through systematic comparison of 19 DNA extraction protocols applied to only 2 mg of infected leaf tissue and testing 15 different DNA polymerases, we could successfully amplify a mitochondrial DNA region (cox2; approximately 620 bp) from herbarium specimens well over a hundred years old. We conclude that DNA extraction and the choice of DNA polymerase are crucial factors for successful PCR amplification from small samples of historic herbarium specimens. Through a combination of suitable DNA extraction protocols and DNA polymerases, only a fraction of the preserved plant material commonly used is necessary for successful PCR amplification. This facilitates the potential use of a far larger number of preserved specimens for molecular phylogenetic investigation and provides access to a wealth of genetic information in preserved in specimens deposited in herbaria around the world without reducing their scientific or historical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号