首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Acute lung injury (ALI) is a devastating syndrome characterized by diffuse alveolar damage, elevated airspace levels of pro-inflammatory cytokines, and flooding of the alveolar spaces with protein-rich edema fluid. Interleukin-1beta (IL-1beta) is one of the most biologically active cytokines in the distal airspaces of patients with ALI. IL-1beta has been shown to increase lung epithelial and endothelial permeability. In this study, we hypothesized that IL-1beta would decrease vectorial ion and water transport across the distal lung epithelium. Therefore, we measured the effects of IL-1beta on transepithelial current, resistance, and sodium transport in primary cultures of alveolar epithelial type II (ATII) cells. IL-1beta significantly reduced the amiloride-sensitive fraction of the transepithelial current and sodium transport across rat ATII cell monolayers. Moreover, IL-1beta decreased basal and dexamethasone-induced epithelial sodium channel alpha-subunit (alpha ENaC) mRNA levels and total and cell-surface protein expression. The inhibitory effect of IL-1beta on alpha ENaC expression was mediated by the activation of p38 MAPK in both rat and human ATII cells and was independent of the activation of alpha v beta6 integrin and transforming growth factor-beta. These results indicate that IL-1beta may contribute to alveolar edema in ALI by reducing distal lung epithelial sodium absorption. This reduction in ion and water transport across the lung epithelium is in large part due to a decrease in alpha ENaC expression through p38 MAPK-dependent inhibition of alpha ENaC promoter activity and to an alteration in ENaC trafficking to the apical membrane of ATII cells.  相似文献   

2.
Although the amiloride-sensitive epithelial sodium channel (ENaC) plays an important role in the modulation of alveolar liquid clearance, the precise mechanism of its regulation in alveolar epithelial cells is still under investigation. Protein kinase C (PKC) has been shown to alter ENaC expression and activity in renal epithelial cells, but much less is known about its role in alveolar epithelial cells. The objective of this study was to determine whether PKC activation modulates ENaC expression and transepithelial Na+ transport in cultured rat alveolar epithelial cells. Alveolar type II cells were isolated and cultured for 3 to 4 d before they were stimulated with phorbol 12-myristate 13-acetate (PMA 100 nmol/L) for 4 to 24 h. PMA treatment significantly decreased alpha, beta, and gammaENaC expression in a time-dependent manner, whereas an inactive form of phorbol ester had no apparent effect. This inhibitory action was seen with only 5-min exposure to PMA, which suggested that PKC activation was very important for the reduction of alphaENaC expression. The PKC inhibitors bisindolylmaleimide at 2 micromol/L and G?6976 at 2 micromol/L diminished the PMA-induced suppression of alphaENaC expression, while rottlerin at 1 micromol/L had no effect. PMA elicited a decrease in total and amiloride-sensitive current across alveolar epithelial cell monolayers. This decline in amiloride-sensitive current was not blocked by PKC inhibitors except for a partial inhibition with bisindolylmaleimide. PMA induced a decrease in rubidium uptake, indicating potential Na+-K+-ATPase inhibition. However, since ouabain-sensitive current in apically permeabilized epithelial cells was similar in PMA-treated and control cells, the inhibition was most probably related to reduced Na+ entry at the apical surface of the cells. We conclude that PKC activation modulates ENaC expression and probably ENaC activity in alveolar epithelial cells. Ca2+-dependent PKC is potentially involved in this response.  相似文献   

3.
Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of alphaENaC, alpha1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02 +/- 0.05 versus 1.31 +/- 0.56 microl/cm2/h, p < 0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers.  相似文献   

4.
Fluid-free alveolar space is critical for normal gas exchange. Influenza virus alters fluid transport across respiratory epithelia producing rhinorrhea, middle ear effusions, and alveolar flooding. However, the mechanism of fluid retention remains unclear. We investigated influenza virus strain A/PR/8/34, which can attach and enter mammalian cells but is incapable of viral replication and productive infection in mammalian epithelia, on epithelial sodium channels (ENaC) in rat alveolar type II (ATII) cells. In parallel, we determined the effects of virus on amiloride-sensitive (i.e., ENaC-mediated) fluid clearance in rat lungs in vivo. Although influenza virus did not change the inulin permeability of ATII monolayers, it rapidly reduced the net volume transport across monolayers. Virus reduced the open probability of single ENaC channels in apical cell-attached patches. U-73122, a phospholipase C (PLC) inhibitor, and PP2, a Src inhibitor, blocked the effect of virus on ENaC. GF-109203X, a protein kinase C (PKC) inhibitor, also blocked the effect, suggesting a PKC-mediated mechanism. In parallel, intratracheal administration of influenza virus produced a rapid inhibition of amiloride-sensitive (i.e., ENaC-dependent) lung fluid transport. Together, these results show that influenza virus rapidly inhibits ENaC in ATII cells via a PLC- and Src-mediated activation of PKC but does not increase epithelial permeability in this same rapid time course. We speculate that this rapid inhibition of ENaC and formation of edema when the virus first attaches to the alveolar epithelium might facilitate subsequent influenza infection and may exacerbate influenza-mediated alveolar flooding that can lead to acute respiratory failure and death.  相似文献   

5.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were treated with dexamethasone (DEX; 2 mg/kg) on 3 consecutive days and exposed to 10% O(2) on the 2nd and 3rd day of treatment to measure hypoxia effects on reabsorption of fluid instilled into lungs. ATII cells were treated with DEX (1 muM) for 3 days before exposure to hypoxia (1.5% O(2)). In normoxic rats, DEX induced a twofold increase in alveolar fluid clearance. Hypoxia decreased reabsorption (-30%) by decreasing its amiloride-sensitive component; pretreatment with DEX prevented the hypoxia-induced inhibition. DEX increased short-circuit currents (ISC) of ATII monolayers in normoxia and blunted hypoxic transport inhibition by increasing the capacity of Na(+)-K(+)-ATPase and epithelial Na(+) channels (ENaC) and amiloride-sensitive ISC. DEX slightly increased the mRNA of alpha- and gamma-ENaC in whole rat lung. In ATII cells from DEX-treated rats, mRNA of alpha(1)-Na(+)-K(+)-ATPase and alpha-ENaC increased in normoxia and hypoxia, and gamma-ENaC was increased in normoxia only. DEX stimulated the mRNA expression of alpha(1)-Na(+)-K(+)-ATPase and alpha-, beta-, and gamma-ENaC of A549 cells in normoxia and hypoxia (1.5% O(2)) when DEX treatment was begun before or during hypoxic exposure. These results indicate that DEX prevents inhibition of alveolar reabsorption by hypoxia and stimulates the expression of Na transporters even when it is applied in hypoxia.  相似文献   

6.
The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a rate-limiting step for sodium (Na+) and water absorption across lung alveolar epithelium. Recent reports suggested that ENaC is regulated by membrane-bound extracellular serine proteases, such as channel-activating proteases (CAPs). The objectives of this study were to examine the role of serine proteases in the regulation of transepithelial alveolar Na+ and water transport in vitro and in vivo and the expression of CAPs in rodent distal lung. In vitro experiments showed that inhibition of endogenous serine proteases by apical aprotinin 1) decreased ENaC-mediated currents in primary cultures of rat and mouse alveolar epithelial cells without affecting the abundance nor the electrophoretic migration pattern of biotinylated alpha- and beta-ENaC expressed at the cell surface and 2) suppressed the increase in amiloride-sensitive short-circuit current induced by the beta2-agonist terbutaline. RT-PCR experiments indicated that CAP1, CAP2, and CAP3 mRNAs were expressed in mouse alveolar epithelial cells, whereas CAP1 was also expressed in alveolar macrophages recovered by bronchoalveolar lavage. CAP1 protein was detected by Western blotting in rat and mouse alveolar epithelial cells, alveolar macrophages and bronchoalveolar lavage fluid. Finally, in vivo experiments revealed that intra-alveolar treatment with aprotinin abolished the increase in Na+-driven alveolar fluid clearance (AFC) induced by terbutaline in an in situ mouse lung model, whereas trypsin potentiated it. These results show that endogenous membrane-bound and/or secreted serine proteases such as CAPs regulate alveolar Na+ and fluid transport in vitro and in vivo in rodent lung.  相似文献   

7.
Alveolar hypoxia may impair sodium-dependent alveolar fluid transport and induce pulmonary edema in rat and human lung, an effect that can be prevented by the inhalation of beta(2)-agonists. To investigate the mechanism of beta(2)-agonist-mediated stimulation of sodium transport under conditions of moderate hypoxia, we examined the effect of terbutaline on epithelial sodium channel (ENaC) expression and activity in cultured rat alveolar epithelial type II cells exposed to 3% O(2) for 24 h. Hypoxia reduced transepithelial sodium current and amiloride-sensitive sodium channel activity without decreasing ENaC subunit mRNA or protein levels. The functional decrease was associated with reduced abundance of ENaC subunits (especially beta and gamma) in the apical membrane of hypoxic cells, as quantified by biotinylation. cAMP stimulation with terbutaline reversed the hypoxia-induced decrease in transepithelial sodium transport by stimulating sodium channel activity and markedly increased the abundance of beta-and gamma-ENaC in the plasma membrane of hypoxic cells. The effect of terbutaline was prevented by brefeldin A, a blocker of anterograde transport. These novel results establish that hypoxia-induced inhibition of amiloride-sensitive sodium channel activity is mediated by decreased apical expression of ENaC subunits and that beta(2)-agonists reverse this effect by enhancing the insertion of ENaC subunits into the membrane of hypoxic alveolar epithelial cells.  相似文献   

8.
Transforming growth factor-beta1 (TGF-beta 1) may be a critical mediator of lung injury and subsequent remodeling during recovery. We evaluated the effects of TGF-beta 1 on the permeability and active ion transport properties of alveolar epithelial cell monolayers. Rat alveolar type II cells plated on polycarbonate filters in defined serum-free medium form confluent monolayers and acquire the phenotypic characteristics of alveolar type I cells. Exposure to TGF-beta 1 (0.1-100 pM) from day 0 resulted in a concentration- and time-dependent decrease in transepithelial resistance (Rt) and increase in short-circuit current (Isc). Apical amiloride or basolateral ouabain on day 6 inhibited Isc by 80 and 100%, respectively. Concurrent increases in expression of Na+-K+-ATPase alpha 1- and beta 1-subunits were observed in TGF-beta 1-treated monolayers. No change in the alpha-subunit of the rat epithelial sodium channel (alpha-rENaC) was seen. Exposure of confluent monolayers to TGF-beta 1 from day 4 resulted in an initial decrease in Rt within 6 h, followed by an increase in Isc over 72-96 h. These results demonstrate that TGF-beta 1 modulates ion conductance and active transport characteristics of the alveolar epithelium, associated with increased Na+-K+-ATPase, but without a change in alpha-rENaC.  相似文献   

9.
Amiloride-sensitive sodium channels in the lung play an important role in lung fluid balance. Particularly in the alveoli, sodium transport is closely regulated to maintain an appropriate fluid layer on the surface of the alveoli. Alveolar type II cells appear to play an important role in this sodium transport, with the role of alveolar type I cells being less clear. In alveolar type II cells, there are a variety of different amiloride-sensitive, sodium-permeable channels. This significant diversity appears to play a role in both normal lung physiology and in pathological states. In many epithelial tissues, amiloride-sensitive epithelial sodium channels (ENaC) are formed from three subunit proteins, designated alpha-, beta-, and gamma-ENaC. At least part of the diversity of sodium-permeable channels in lung arises from the assembling of different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. This leads to epithelial tissue in the lung, which has enormous flexibility to alter the magnitude and regulation of salt and water transport. In this review, we discuss the biophysical properties and occurrence of these various channels and some of the mechanisms for their regulation.  相似文献   

10.
11.
12.
Widespread vascular endothelial injury is the major mechanism for multiorgan dysfunction in sepsis. Following this process, the permeability of the alveolar capillaries is augmented with subsequent increase in water content and acute respiratory distress syndrome (ARDS). Nevertheless, the role of alveolar epithelium is less known. Therefore, we examined alveolar fluid clearance (AFC) using isolated perfused rat lung model in septic rats without ARDS. Sepsis was induced by ligating and puncturing the cecum with a 21-gauge needle. AFC was examined 24 and 48 h later. The expression of Na-K-ATPase proteins was examined in type II alveolar epithelial cells (ATII) and basolateral membrane (BLM). The rate of AFC in control rats was 0.51 ± 0.02 ml/h (means ± SE) and decreased to 0.3 ± 0.02 and 0.33 ± 0.03 ml/h in 24 and 48 h after sepsis induction, respectively (P < 0.0001). Amiloride, significantly decreased AFC in sepsis; conversely, isoproterenol reversed the inhibitory effect of sepsis. The alveolar-capillary barrier in septic rats was intact; therefore the finding of increased extravascular lung water in early sepsis could be attributed to accumulation of protein-poor fluid. The expression of epithelial sodium channel and Na-K-ATPase proteins in whole ATII cells was not different in both cecal ligation and puncture and control groups; however, the abundance of Na-K-ATPase proteins was significantly decreased in BLMs of ATII cells in sepsis. Early decrease in AFC in remote sepsis is probably related to endocytosis of the Na-K-ATPase proteins from the cell plasma membrane into intracellular pools, with resultant inhibition of active sodium transport in ATII cells.  相似文献   

13.
Alveolar type II (ATII) cells remain differentiated and express surfactant proteins when cultured at an air–liquid (A/L) interface. When cultured under submerged conditions, ATII cells dedifferentiate and change their gene expression profile. We have previously shown that gene expression under submerged conditions is regulated by hypoxia inducible factor (HIF) signaling due to focal hypoxia resulting from ATII cell metabolism. Herein, we sought to further define gene expression changes in ATII cells cultured under submerged conditions. We performed a genome wide microarray on RNA extracted from rat ATII cells cultured under submerged conditions for 24–48 h after switching from an A/L interface. We found significant alterations in gene expression, including upregulation of the HIF target genes stanniocalcin-1 (STC1), tyrosine hydroxylase (Th), enolase (Eno) 2, and matrix metalloproteinase (MMP) 13, and we verified upregulation of these genes by RT-PCR. Because STC1, a highly evolutionarily conserved glycoprotein with anti-inflammatory, anti-apoptotic, anti-oxidant, and wound healing properties, is widely expressed in the lung, we further explored the potential functions of STC1 in the alveolar epithelium. We found that STC1 was induced by hypoxia and HIF in rat ATII cells, and this induction occurred rapidly and reversibly. We also showed that recombinant human STC1 (rhSTC1) enhanced cell motility with extended lamellipodia formation in alveolar epithelial cell (AEC) monolayers but did not inhibit the oxidative damage induced by LPS. We also confirmed that STC1 was upregulated by hypoxia and HIF in human lung epithelial cells. In this study, we have found that several HIF target genes including STC1 are upregulated in AECs by a submerged condition, that STC1 is regulated by hypoxia and HIF, that this regulation is rapidly and reversibly, and that STC1 enhances wound healing moderately in AEC monolayers. However, STC1 did not inhibit oxidative damage in rat AECs stimulated by LPS in vitro. Therefore, alterations in gene expression by ATII cells under submerged conditions including STC1 were largely induced by hypoxia and HIF, which may be relevant to our understanding of the pathogenesis of various lung diseases in which the alveolar epithelium is exposed to relative hypoxia.  相似文献   

14.
Sodium absorption by an amiloride-sensitive channel is the main driving force of lung liquid clearance at birth and lung edema clearance in adulthood. In this study, we tested whether tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine involved in several lung pathologies, could modulate sodium absorption in cultured alveolar epithelial cells. We found that TNF-alpha decreased the expression of the alpha-, beta-, and gamma-subunits of epithelial sodium channel (ENaC) mRNA to 36, 43, and 16% of the controls after 24-h treatment and reduced to 50% the amount of alpha-ENaC protein in these cells. There was no impact, however, on alpha(1) and beta(1) Na(+)-K(+)-ATPase mRNA expression. Amiloride-sensitive current and ouabain-sensitive Rb(+) uptake were reduced, respectively, to 28 and 39% of the controls. A strong correlation was found at different TNF-alpha concentrations between the decrease of amiloride-sensitive current and alpha-ENaC mRNA expression. All these data show that TNF-alpha, a proinflammatory cytokine present during lung infection, has a profound influence on the capacity of alveolar epithelial cells to transport sodium.  相似文献   

15.
16.
KL-6 is a pulmonary epithelial mucin more prominently expressed on the surface membrane of alveolar type II cells when these cells are proliferating, stimulated, and/or injured. We hypothesized that high levels of KL-6 in epithelial lining fluid and plasma would reflect the severity of lung injury in patients with acute lung injury (ALI). Epithelial lining fluid was obtained at onset (day 0) and day 1 of acute respiratory distress syndrome (ARDS)/ALI by bronchoscopic microsampling procedure in 35 patients. On day 0, KL-6 and albumin concentrations in epithelial lining fluid were significantly higher than in normal controls (P < 0.001), and the concentrations of KL-6 in epithelial lining fluid (P < 0.002) and in plasma (P < 0.0001) were higher in nonsurvivors than in survivors of ALI/ARDS. These observations were corroborated by the immunohistochemical localization of KL-6 protein expression in the lungs of nonsurvivors with ALI and KL-6 secretion from cultured human alveolar type II cells stimulated by proinflammatory cytokines. Because injury to distal lung epithelial cells, including alveolar type II cells, is important in the pathogenesis of ALI, the elevation of KL-6 concentrations in plasma and epithelial lining fluid could be valuable indicators for poor prognosis in clinical ALI.  相似文献   

17.
Hypoxia has been reported to inhibit activity and expression of ion transporters of alveolar epithelial cells. This study extended those observations by investigating the mechanisms underlying inhibition of active Na transport across primary cultured adult rat alveolar epithelial cell monolayers grown on polycarbonate filters. Cell monolayers were exposed to normoxia and hypoxia (1.5% and 5% O(2), 5% CO(2)), and resultant changes in bioelectric properties [i.e., short-circuit current (I(sc)) and transepithelial resistance (R(t))] were measured in Ussing chambers. Results showed that I(sc) decreased with duration of exposure to hypoxia, while relatively little change was observed for R(t). In normoxia, amiloride inhibited approximately 70% of I(sc). The amiloride-sensitive portion of I(sc) decreased over time of exposure to hypoxia, whereas the magnitude of the amiloride-insensitive portion of I(sc) was not affected. Na pump capacity measured after permeabilization of the apical plasma membrane with amphotericin B decreased in monolayers exposed to 1.5% O(2) for 24 h, as did the capacity of amiloride-sensitive Na uptake measured after imposing an apical to basolateral Na gradient and permeabilization of the basolateral membrane. These results demonstrate that exposure to hypoxia inhibits alveolar epithelial Na reabsorption by reducing the rates of both apical amiloride-sensitive Na entry and basolateral Na extrusion.  相似文献   

18.
The homeostatic lung protective effects of alpha-1 antitrypsin (A1AT) may require the transport of circulating proteinase inhibitor across an intact lung endothelial barrier. We hypothesized that uninjured pulmonary endothelial cells transport A1AT to lung epithelial cells. Purified human A1AT was rapidly taken up by confluent primary rat pulmonary endothelial cell monolayers, was secreted extracellularly, both apically and basolaterally, and was taken up by adjacent rat lung epithelial cells co-cultured on polarized transwells. Similarly, polarized primary human lung epithelial cells took up basolaterally-, but not apically-supplied A1AT, followed by apical secretion. Evidence of A1AT transcytosis across lung microcirculation was confirmed in vivo by two-photon intravital microscopy in mice. Time-lapse confocal microscopy indicated that A1AT co-localized with Golgi in the endothelium whilst inhibition of the classical secretory pathway with tunicamycin significantly increased intracellular retention of A1AT. However, inhibition of Golgi secretion promoted non-classical A1AT secretion, associated with microparticle release. Polymerized A1AT or A1AT supplied to endothelial cells exposed to soluble cigarette smoke extract had decreased transcytosis. These results suggest previously unappreciated pathways of A1AT bidirectional uptake and secretion from lung endothelial cells towards the alveolar epithelium and airspaces. A1AT trafficking may determine its functional bioavailablity in the lung, which could be impaired in individuals exposed to smoking or in those with A1AT deficiency.  相似文献   

19.
Amiloride-sensitive Na(+) channels, present in fetal and adult alveolar epithelial type II (ATII) cells, play a critical role in the reabsorption of fetal fluid shortly after birth and in limiting the extent of alveolar edema across the adult lung. Because of the difficulty in isolating and culturing ATII cells, there is considerable interest in characterizing the properties of ion channels and their response to injury of ATII cell-like cell lines such as A549 that derive from a human alveolar cell carcinoma. A549 cells were shown to contain alpha-, beta-, and gamma-epithelial Na(+) channel mRNAs. In the whole cell mode of the patch-clamp technique (bath, 145 mM Na(+); pipette, 145 mM K(+)), A549 cells exhibited inward Na(+) currents reversibly inhibited by amiloride, with an inhibition constant of 0.83 microM. Ion substitution studies showed that these channels were moderately selective for Na(+) (Na(+)-to-K(+) permeability ratio = 6:1). Inward Na(+) currents were activated by forskolin (10 microM) and inhibited by nitric oxide (300 nM) and cGMP. Recordings in cell-attached mode revealed the presence of an amiloride-sensitive Na(+) channel with a unitary conductance of 8.6 +/- 0.04 (SE) pS. Channel activity was increased by forskolin and decreased by nitric oxide and the cGMP analog 8-bromo-cGMP. These data demonstrate that A549 cells contain amiloride-sensitive Na(+) channels with biophysical properties similar to those of ATII cells.  相似文献   

20.
We have previously shown that cardiogenic pulmonary edema fluid (EF) increases Na(+) and fluid transport by fetal distal lung epithelia (FDLE) (Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM and O'Brodovich H. J Physiol 544: 537-548, 2002). We now report the effect of EF on Na(+) and fluid transport by the adult lung. We first studied primary cultures of adult type II (ATII) epithelium and found that overnight exposure to EF increased Na(+) transport, and this effect was mainly due to factors other than catecholamines. Plasma did not stimulate Na(+) transport in ATII. Purification of EF demonstrated that at least some agent(s) responsible for the amiloride-insensitive component resided within the globulin fraction. ATII exposed to globulins demonstrated a conversion of amiloride-sensitive short-circuit current (I(sc)) to amiloride-insensitive I(sc) with no increase in total I(sc). Patch-clamp studies showed that ATII exposed to EF for 18 h had increased the number of highly selective Na(+) channels in their apical membrane. In situ acute exposure to EF increased the open probability of Na(+)-permeant ion channels in ATII within rat lung slices. EF did increase, by amiloride-sensitive pathways, the alveolar fluid clearance from the lungs of adult rats. We conclude that cardiogenic EF increases Na(+) transport by adult lung epithelia in primary cell culture, in situ and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号