首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Adsorption of DNA to sand and variable degradation rates of adsorbed DNA   总被引:11,自引:0,他引:11  
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

2.
Adsorption of plasmid DNA to mineral surfaces and protection against DNase I.   总被引:14,自引:0,他引:14  
The adsorption of [3H]thymidine-labeled plasmid DNA (pHC314; 2.4 kb) of different conformations to chemically pure sand was studied in a flowthrough microenvironment. The extent of adsorption was affected by the concentration and valency of cations, indicating a charge-dependent process. Bivalent cations (Mg2+, Ca2+) were 100-fold more effective than monovalent cations (Na+, K+, NH4+). Quantitative adsorption of up to 1 microgram of negatively supercoiled or linearized plasmid DNA to 0.7 g of sand was observed in the presence of 5 mM MgCl2 at pH 7. Under these conditions, more than 85% of DNA adsorbed within 60 s. Maximum adsorption was 4 micrograms of DNA to 0.7 g of sand. Supercoil molecules adsorbed slightly less than linearized or open circular plasmids. An increase of the pH from 5 to 9 decreased adsorption at 0.5 mM MgCl2 about eightfold. It is concluded that adsorption of plasmid DNA to sand depends on the neutralization of negative charges on the DNA molecules and the mineral surfaces by cations. The results are discussed on the grounds of the polyelectrolyte adsorption model. Sand-adsorbed DNA was 100 times more resistant against DNase I than was DNA free in solution. The data support the idea that plasmid DNA can enter the extracellular bacterial gene pool which is located at mineral surfaces in natural bacterial habitats.  相似文献   

3.
The adsorption of [3H]thymidine-labeled plasmid DNA (pHC314; 2.4 kb) of different conformations to chemically pure sand was studied in a flowthrough microenvironment. The extent of adsorption was affected by the concentration and valency of cations, indicating a charge-dependent process. Bivalent cations (Mg2+, Ca2+) were 100-fold more effective than monovalent cations (Na+, K+, NH4+). Quantitative adsorption of up to 1 microgram of negatively supercoiled or linearized plasmid DNA to 0.7 g of sand was observed in the presence of 5 mM MgCl2 at pH 7. Under these conditions, more than 85% of DNA adsorbed within 60 s. Maximum adsorption was 4 micrograms of DNA to 0.7 g of sand. Supercoil molecules adsorbed slightly less than linearized or open circular plasmids. An increase of the pH from 5 to 9 decreased adsorption at 0.5 mM MgCl2 about eightfold. It is concluded that adsorption of plasmid DNA to sand depends on the neutralization of negative charges on the DNA molecules and the mineral surfaces by cations. The results are discussed on the grounds of the polyelectrolyte adsorption model. Sand-adsorbed DNA was 100 times more resistant against DNase I than was DNA free in solution. The data support the idea that plasmid DNA can enter the extracellular bacterial gene pool which is located at mineral surfaces in natural bacterial habitats.  相似文献   

4.
5.
Gradual degradation of internucleosomal DNA is a hallmark of apoptosis and can be simulated by incubating isolated thymocyte nuclei in the presence of 5 mM Mg2+ and 5 mM Ca2+ at 37 degrees C. Staining of nuclei with the DNA binding fluorescent dye propidium iodide (PI) showed that intensity of fluorescence correlated with the extent of DNA degradation. PI fluorescence was increased in the presence of DNase I. Thus it seems that the cleavage of chromatin DNA by DNase 1 or by the endogenous enzyme increases the accessibility of DNA for the dye. No increase of fluorescence was observed in the presence of the known inhibitors of the endogenous endonuclease: Zn2+ and EGTA. However, the presence of Zn2+ led to decreased staining of the nuclei by PI and caused a shift in the scatter profile of the nuclei, suggesting that a conformational change of chromatin is induced by this ion. This correlation between intensity of PI staining and DNA degradation should be useful to compare endogenous nuclease levels in lymphocyte populations.  相似文献   

6.
M V Norgard  K Keem  J J Monahan 《Gene》1978,3(4):279-292
The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA.  相似文献   

7.
We have examined the effects of histone hyperacetylation upon nuclease digestion of nuclei and subsequent fractionation of chromosomal material in the presence of MgCl2. DNase I shows a maximum sensitivity towards hyperacetylated nuclei at somewhat elevated ionic strengths (150-200 mM NaCl), whereas micrococcal nuclease exhibits no specificity for acetylated nuclei over a broad range of ionic strengths. Fractionation in the presence of MgCl2 of hyperacetylated nuclei digested with micrococcal nuclease results in a substantial increase in the amount of soluble chromatin relative to that obtained with control nuclei. This increased yield of Mg2+-soluble chromatin results from the recruitment into this fraction of oligonucleosomes containing extremely hyperacetylated histones. These results suggest that contiguous nucleosomes containing highly acetylated histones may be altered in their ability to interact with themselves and with other nucleosomes.  相似文献   

8.
The equilibrium adsorption and binding of DNA from Bacillus subtilis on the clay mineral montmorillonite, the ability of bound DNA to transform competent cells, and the resistance of bound DNA to degradation by DNase I are reported. Maximum adsorption of DNA on the clay occurred after 90 min of contact and was followed by a plateau. Adsorption was pH dependent and was greatest at pH 1.0 (19.9 micrograms of DNA mg of clay-1) and least at pH 9.0 (10.7 micrograms of DNA mg of clay-1). The transformation frequency increased as the pH at which the clay-DNA complexes were prepared increased, and there was no transformation by clay-DNA complexes prepared at pH 1. After extensive washing with deionized distilled water (pH 5.5) or DNA buffer (pH 7.5), 21 and 28%, respectively, of the DNA remained bound. Bound DNA was capable of transforming competent cells (as was the desorbed DNA), indicating that adsorption, desorption, and binding did not alter the transforming ability of the DNA. Maximum transformation by bound DNA occurred at 37 degrees C (the other temperatures evaluated were 0, 25, and 45 degrees C). DNA bound on montmorillonite was protected against degradation by DNase, supporting the concept that "cryptic genes" may persist in the environment when bound on particulates. The concentration of DNase required to inhibit transformation by bound DNA was higher than that required to inhibit transformation by comparable amounts of free DNA, and considerably more bound than free DNase was required to inhibit transformation by the same amount of free DNA. Similarly, when DNA and DNase were bound on the same or separate samples of montmorillonite, the bound DNA was protected from the activity of DNase.  相似文献   

9.
The equilibrium adsorption and binding of DNA from Bacillus subtilis on the clay mineral montmorillonite, the ability of bound DNA to transform competent cells, and the resistance of bound DNA to degradation by DNase I are reported. Maximum adsorption of DNA on the clay occurred after 90 min of contact and was followed by a plateau. Adsorption was pH dependent and was greatest at pH 1.0 (19.9 micrograms of DNA mg of clay-1) and least at pH 9.0 (10.7 micrograms of DNA mg of clay-1). The transformation frequency increased as the pH at which the clay-DNA complexes were prepared increased, and there was no transformation by clay-DNA complexes prepared at pH 1. After extensive washing with deionized distilled water (pH 5.5) or DNA buffer (pH 7.5), 21 and 28%, respectively, of the DNA remained bound. Bound DNA was capable of transforming competent cells (as was the desorbed DNA), indicating that adsorption, desorption, and binding did not alter the transforming ability of the DNA. Maximum transformation by bound DNA occurred at 37 degrees C (the other temperatures evaluated were 0, 25, and 45 degrees C). DNA bound on montmorillonite was protected against degradation by DNase, supporting the concept that "cryptic genes" may persist in the environment when bound on particulates. The concentration of DNase required to inhibit transformation by bound DNA was higher than that required to inhibit transformation by comparable amounts of free DNA, and considerably more bound than free DNase was required to inhibit transformation by the same amount of free DNA. Similarly, when DNA and DNase were bound on the same or separate samples of montmorillonite, the bound DNA was protected from the activity of DNase.  相似文献   

10.
A quartz crystal microbalance with dissipation (QCM-D) is used to determine the adsorption rate of a supercoiled plasmid DNA onto a quartz surface and the structure of the resulting adsorbed DNA layer. To better understand the DNA adsorption mechanisms and the adsorbed layer physicochemical properties, the QCM-D data are complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The data from simultaneous monitoring of variations in frequency and dissipation energy with the QCM-D suggest that the adsorbed DNA layer is more rigid in the presence of divalent (calcium) cations compared to monovalent (sodium) cations. Adsorption rates are significantly higher in the presence of calcium, attaining a transport-limited rate at about 1 mM Ca2+. Results further suggest that in low ionic strength solutions containing 1 mM Ca2+ and in moderately high ionic strength solutions containing 300 mM NaCl, plasmid DNA adsorption to negatively charged mineral surfaces is irreversible.  相似文献   

11.
Dahlgren PR  Lyubchenko YL 《Biochemistry》2002,41(38):11372-11378
Atomic force microscopy (AFM) was applied to directly visualize the end-to-end DNA interaction mediated by magnesium cations. We took advantage of the APS-mica, allowing the preparation of samples in a broad range of monovalent and divalent cations to separate the effects of Mg(2+) and Na(+) cations on the interaction of restriction DNA fragments with cohesive end. The AFM data clearly show that DNA restriction fragments with cohesive ends form substantial amount of circles in the presence of Mg(2+) cations, suggesting that Mg(2+) cations stabilize the interaction of cohesive ends. This effect depends on the MgCl(2) concentration, so that the yield of circles approaches 18% in the presence of 50 mM MgCl(2). Furthermore, we demonstrate that this conferred cohesive end stability is specific for divalent cations, as substitution of MgCl(2) with NaCl leads to a near complete loss of cohesive end stability. We further demonstrate that cohesive end stabilization is achieved by substituting Mg(2+) with Ca(2+), Mn(2+), or Zn(2+). The data obtained suggest that the end stabilization mediated by divalent cations is primarily the result of inter-base interactions rather than bridging of phosphate moieties.  相似文献   

12.
1. It has been reported that DNase I can be highly purified from pancreas extract by affinity chromatography on a dDNA-Sepharose column under non-digestive conditions. In the present study, the adsorption-elution of other nucleases on the column under non-digestive conditions was studied. 2. All the seven kinds of nucleases tested were adsorbed when applied on a dDNA-Sepharose column under conditions which did not allow the enzymes to hydrolyze the DNA. The non-digestive conditions were as follows. i) For DNase II (pI=10.2), pH 3.0 in the presence of 50 mM sodium sulfate (inhibitor), ii) for micrococcal nuclease (pI=9.6), pH 4.0 in the absence of Ca2+ (activator), iii) for restriction endonucleases Eco RI (pI=5+1), Hind III (pI=5+1), and Bam HI (pI=5+1), pH 4.0 in the presence of 20% glycerol and 0.1% Neopeptone (stabilizers), and iv) for nucleases S1 (pI=5+1) and nuclease P1 (pI=4.5), pH 7.0. At the respective pH's, the enzymes other than nucleases S1 and P1 were cationic so as to exhibit electrostatic attraction to the anionic dDNA-Sepharose. Although S1 and P1 were anionic, they still adsorbed to the column. 3. All the adsorbed nucleases described above were eluted by a concentration gradient of KCl without changing pH. The ionic strengths required for elution were 0.19 for DNase II, 0.53 for micrococcal nuclease, 0.73 for Eco RI, 0.72 for Hind III, 0.37 for Bam HI, 0.17 for P1, and 0.13 for S1. The fact that the ionic strength required for the elution of DNase I (pI=5.0) was 0.39 at pH 4.0 indicates that the former five enzymes except DNase II can be chromatographed with almost the same or higher efficiency than DNase I, because the proteins adsorbed with no-specific affinity could be mostly eluted at lower ionic strength. On the other hand, the fact that nucleases P1 and S1 were adsorbed in spite of electrostatic repulsion suggests that these two enzymes can also be effectively chromatographed, especially when other cationic proteins are previously removed by an appropriate method such as adsorption to a typical cation exchanger.  相似文献   

13.
Mammalian sperm chromatin is bound by protamines into highly condensed toroids with approximately 50 kilobases (kb) of DNA. It is also organized into loop domains of about the same size that are attached at their bases to the proteinaceous nuclear matrix. In this work, we test our model that each sperm DNA-loop domain is condensed into a single protamine toroid. Our model predicts that the protamine toroids are linked by chromatin that is more sensitive to nucleases than the DNA within the toroids. To test this model, we treated hamster sperm nuclei with DNase I and found that the sperm chromatin was digested into fragments with an average size of about 50 kb, by pulse-field gel electrophoresis (PFGE). Surprisingly, we also found that spermatozoa treated with 0.25% Triton X-100 (TX) and 20 mM MgCl2 overnight resulted in the same type of degradation, suggesting that sperm nuclei have a mechanism for digesting their own DNA at the bases of the loop domains. We extracted the nuclei with 2 M NaCl and 10 mM dithiothreitol (DTT) to make nuclear halos. Nuclear matrices prepared from DNase I-treated spermatozoa had no DNA attached, suggesting that DNase I digested the DNA at the bases of the loop domains. TX-treated spermatozoa still had their entire DNA associated with the nuclear matrix, even though the DNA was digested into 50-kb fragments as revealed by PFGE. The data support our donut-loop model for sperm chromatin structure and suggest a functional role for this type of organization in that sperm can digest its own DNA at the sites of attachment to the nuclear matrix.  相似文献   

14.
Magnesium binding and conformational change of DNA in chromatin   总被引:1,自引:0,他引:1  
K Watanabe  K Iso 《Biochemistry》1984,23(7):1376-1383
The structure of chromatin in the presence of Mg2+ ions was examined by circular dichroism and equilibrium dialysis. Circular dichroism (CD) shows that above 260 nm the intensity of the spectrum of DNA in nucleoproteins decreases as the Mg2+ concentration increases. This change is an intrinsic characteristic of DNA since it is also observed in protein-free DNA and has been attributed to a change in the winding angle of base pairs around the DNA axis. Some structural elements of the DNA in the nucleosome core, therefore, are as movable as those of protein-free DNA. The basic organization of H1-depleted chromatin, 146 base pairs (bp) of DNA wound around core histones and a residual 49 bp in the linker region in the repeating unit, is maintained both in the presence and in the absence of Mg2+ ions, as shown by the fact that the CD spectrum of H1-depleted chromatin has the same type of linear combination between the spectrum of protein-free DNA and that of the nucleosome core in 0.2 mM MgCl2-10 mM triethanolamine (pH 7.8) as it has in 1 mM ethylenediaminetetraacetic acid-10 mM tris(hydroxymethyl) aminomethane (pH 7.8). The ellipticity of chromatin shows a smaller decrease relative to the other nucleoproteins and protein-free DNA upon the addition of Mg2+ ions. Therefore, some structural elements of chromatin are apparently somewhat protected against the conformational change induced by these ions. The spectrum of chromatin becomes almost indistinguishable from that of H1-depleted chromatin in 0.2 mM MgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.  相似文献   

16.
We have characterized the double-stranded DNA (dsDNA) binding properties of RecA protein, using an assay based on changes in the fluorescence of 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complexes. Here we use fluorescence, nitrocellulose filter-binding, and DNase I-sensitivity assays to demonstrate the binding of two duplex DNA molecules by the RecA protein filament. We previously established that the binding stoichiometry for the RecA protein-dsDNA complex is three base-pairs per RecA protein monomer, in the presence of ATP. In the presence of ATPgammaS, however, the binding stoichiometry depends on the MgCl2 concentration. The stoichiometry is 3 bp per monomer at low MgCl2 concentrations, but changes to 6 bp per monomer at higher MgCl2 concentrations, with the transition occurring at approximately 5 mM MgCl2. Above this MgCl2 concentration, the dsDNA within the RecA nucleoprotein complex becomes uncharacteristically sensitive to DNase I digestion. For these reasons we suggest that, at the elevated MgCl2 conditions, the RecA-dsDNA nucleoprotein filament can bind a second equivalent of dsDNA. These results demonstrate that RecA protein has the capacity to bind two dsDNA molecules, and they suggest that RecA or RecA-like proteins may effect homologous recognition between intact DNA duplexes.  相似文献   

17.
18.
DNase I requires Ca2+ and Mg2+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca2+ while the other two sites coordinate Mg2+. These theoretical results are strongly supported by revisiting crystallographic structures that contain bpDNase I. One Ca2+ stabilizes the functional DNase I structure. The presence of Mg2+ in close vicinity to the catalytic pocket of bpDNase I reinforces the idea of a cation-assisted hydrolytic mechanism. Importantly, Poisson-Boltzmann-type electrostatic potential calculations demonstrate that the divalent cations collectively control the electrostatic fit between bpDNase I and DNA. These results improve our understanding of the essential role of cations in the biological function of bpDNase I. The high degree of conservation of the amino acids involved in the identified cation-binding sites across DNase I and DNase I-like proteins from various species suggests that our findings generally apply to all DNase I-DNA interactions.  相似文献   

19.
The stoichiometric actin--DNase-I complex was used to study the actin--nucleotide and actin--divalent-cation interactions and its ATPase activity in the presence of MgCl2 and cytochalasin D. Treatment of actin--DNase-I complex with 1 mM EDTA results in almost complete restoration of its otherwise inhibited DNase I activity, although the complex does not dissociate, as verified by size-exclusion chromatography. This effect is due to a loss of actin-bound nucleotide but is prevented by the presence of 0.1-0.5 mM ATP, ADP and certain ATP analogues. In this case no increase in DNase I activity occurs, even in the presence of EDTA. At high salt concentrations and in the presence of Mg2+ ('physiological conditions') the association rate constants for ATP, ADP and epsilon ATP (1,N6-ethenoadenosine 5'-triphosphate) and the dissociation rate constant for epsilon ATP were determined. Both the on and off rates were found to be reduced by a factor of about 10 when compared to uncomplexed actin. Thus the binding constant of epsilon ATP to actin is almost unaltered after complexing to DNase I (2.16 x 10(8) M-1). Titrating the increase in DNase I activity of the actin--DNase I complex against nucleotide concentration in the presence of EDTA, the association constant of ATP to the cation-free form of actin--DNase I complex was found to be 5 x 10(3) M-1, which is many orders of magnitude lower than in the presence of divalent metal ions. The binding constant of Ca2+ to the high-affinity metal-binding site of actin was found not to be altered when complexed to DNase I, although the rate of Ca2+ release decreases by a factor of 8 after actin binding to DNase I. The rate of denaturation of nucleotide-free and metal-ion-free actin--DNase I complex was found to be reduced by a factor of about 15. The ATPase activity of the complex is stimulated by addition of Mg2+ and even more effectively by cytochalasin D, proving that this drug is able to interact with monomeric actin.  相似文献   

20.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号