首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all chemotherapy drugs currently on the market cause serious side effects. Fortunately, several studies have shown that some non‐toxic biological macromolecules, including algal polysaccharides, possess anti‐cancer activities or can increase the efficacy of conventional chemotherapy drugs. Polysaccharides are characteristic secondary metabolites of many algae. The efficacy of polysaccharides on the normal and cancer cells is not well investigated, but our investigations proved a cell specific effect of a newly isolated extracellular polysaccharide from the red microalga Porphyridium sordidum. The investigated substance was composed of xylose:glucose and galactose:manose:rhamnose in a molar ratio of 1:0.52:0.44:0.31. Reversible electroporation has been exploited to increase the transport through the plasma membrane into the tested breast cancer tumor cells MCF‐7 and MDA‐MB231. Application of 75 µg/mL polysaccharide in combination with 200 V/cm electroporation induced 40% decrease in viability of MDA‐MB231 cells and changes in cell morphology while control cells (MCF10A) remained with normal morphology and kept vitality.  相似文献   

2.
Two monoclonal antibodies (Mabs), RP215 and GHR106, were selected for the preclinical evaluations of anti-cancer drugs targeting various human cancers including those of the ovary, cervix, lung, and liver. Both Mabs were shown to react with pan cancer markers, which are over-expressed on the surface of almost all human cancers. RP215 Mab was shown to react with the carbohydrate-associated epitope(s) of cancer cell-expressed glycoproteins, mainly consisting of immunoglobulin superfamily (IgSF) proteins and mucins, generally known as CA215. GHR106 Mab was generated against the extracellular domain of human GnRH receptor, which is also highly expressed on the cancer cell surface. Preclinical studies were performed to evaluate the efficacy of these two Mabs as anti-cancer drugs for treating human cancers. High tumor specificity of RP215 Mab was demonstrated with immunohistochemical staining studies of various cancer cell lines, as well as normal and cancerous tissue sections. These two Mabs were shown to induce apoptosis as well as complement-dependent cytotoxicity upon treatment to many cultured cancer cells. Significant dose-dependent growth inhibition of tumor cells from several different tissue origins were demonstrated by nude mouse experiments. It was further demonstrated that GHR106 Mab can function as long-acting GnRH analogs in its biological actions. Efforts were made to generate human/mouse chimeric forms of the GHR106 Mab. Based on the results of these preclinical studies, we believe that these two Mabs, in chimeric or humanized forms, can be developed into suitable therapeutic agents for treatment of human cancers as anti-cancer drugs.  相似文献   

3.
Chemotherapy can cure a number of human cancers but resistance (either intrinsic or acquired) remains a significant problem in many patients and in many types of solid tumour. Combination chemotherapy (using drugs with different cellular targets/mechanisms) was introduced in order to kill cells which had developed resistance to a specific drug, and to allow delivery of a greater total dose of anti-cancer chemicals by combining drugs with different side-effects (Pratt et al., 1994). Nearly all anti-cancer drugs kill tumour cells by activating an endogenous bio-chemical pathway for cell suicide, known as programmed cell death or apoptosis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)是一种异质性的免疫调节细胞。在癌症机体中,MDSCs是主要的免疫抑制细胞,通过多种途径诱导T淋巴细胞衰竭和凋亡,促进肿瘤细胞逃逸,从而导致肿瘤不受控制地生长,是癌症治疗的主要障碍。目前,MDSCs是癌症药物研究的热点和关键靶点。近年来,研究报道显示多糖可下调MDSCs在癌症患者及肿瘤实验动物体内数量和比例,并诱导免疫抑制功能丧失。食药用菌多糖是天然多糖的主要来源,可以通过多种途径激活肿瘤免疫应答,其抑制MDSCs功能的研究报道逐年增多,目前研究主要集中在香菇多糖、灵芝多糖等部分种类。因此,本文简要描述髓源性抑制细胞在癌症中的免疫抑制功能,然后详细地综述食药用菌多糖对髓源性抑制细胞作用的研究进展,以期为食药用菌多糖在肿瘤免疫药物开发及辅助增强(如免疫检查点抑制剂)等免疫治疗提供新思路。  相似文献   

5.
Overexpression of ErbB2 has been found in approximately 25-30% of human breast cancers and has been shown to render the cancer cells more resistant to chemotherapy. However, it is not clear whether ErbB2 overexpression renders the cells more resistant to specific anti-cancer drugs or renders the cells more resistant to a broad range of anti-cancer drugs. It is not clear how the function of ErbB2 in drug resistance is related to expression and activation of the other ErbB receptors. In this communication, we showed that several breast cancer cell lines including BT20, BT474, MCF-7, MDA-MB-453, and SKBR-3 cells had a similar pattern of resistance to a broad range of anti-cancer drugs including 5-Fluorouracil, Cytoxan, Doxorubincin, Taxol, and Vinorelbin, suggesting a mechanism of multidrug resistance. High expression of P-glycoprotein and the ErbB receptors contribute to drug resistance of these breast cancer cells; however, overexpression of ErbB2 alone is not a major factor in determining drug resistance. To further determine the role of the ErbB receptors in drug resistance, we selected various NIH 3T3 cell lines that specifically expressed EGF receptor (EGFR), ErbB2, ErbB3, EGFR/ErbB2, EGFR/ErbB3, or ErbB2/ErbB3. A cytotoxicity assay showed that expression of ErbB2 alone did not significantly enhance drug resistance, whereas coexpression of either EGFR or ErbB3 with ErbB2 significantly enhanced drug resistance. Moreover, ErbB2 was highly phosphorylated in NIH 3T3 cells that coexpress ErbB2 with either EGFR or ErbB3, but not in NIH 3T3 cells that express ErbB2 alone. Together, our results suggest that coexpression of EGFR or ErbB3 with ErbB2 induces high phosphorylation of ErbB2 and renders the cells more resistant to various anti-cancer drugs.  相似文献   

6.
The development of both chemotherapeutic drug resistance as well as adverse side effects suggest that the current chemotherapeutic drugs remain ineffective in treating the various types of cancers. The development of new metallodrugs presenting anti-cancer activity is therefore needed. Ruthenium complexes have gained a great deal of interest due to their promising anti-tumour properties and reduced toxicity in vivo. This study highlighted the effective induction of cell death in a malignant melanoma cell by two novel bis-amino-phosphine ruthenium(II) complexes referred to as GA105 and GA113. The IC50 concentrations were determined for both the complexes, the ligand and cisplatin, for comparison. Both complexes GA105 and GA113 displayed a high anti-cancer selectivity profile as they exhibited low IC50 values of 6.72 µM and 8.76 µM respectively, with low toxicity towards a non-malignant human cell line. The IC50 values obtained for both complexes were lower than that of cisplatin. The new complexes were more effective compared to the free ligand, GA103 (IC50 = >20 µM). Morphological studies on treated cells induced apoptotic features, which with further studies could indicate an intrinsic cell death pathway. Additionally, flow cytometric analysis revealed that the mode of cell death of complex GA113 was apoptosis. The outcomes herein give further insight into the potential use of selected Ru(II) complexes as alternative chemotherapeutic drugs in the future.  相似文献   

7.
8.
9.
Lipid-based nanoformulations have been extensively investigated for improving oral efficacy of plethora of drugs. Chemotherapeutic agents remain a preferred option for effective management of cancer; however, most chemotherapeutic agents suffer from limitation of poor oral bioavailability that is associated with their physicochemical properties. Drug delivery via lipid-based nanosystems possesses strong rational and potential for improving oral bioavailability of such anti-cancer molecules through various mechanisms, viz. improving their gut solubilisation owing to micellization, improving mucosal permeation, improving lymphatic uptake, inhibiting intestinal metabolism and/or inhibiting P-glycoprotein efflux of molecules in the gastrointestinal tract. Various in vitro characterization techniques have been reported in literature that aid in getting insights into mechanisms of lipid-based nanodevices in improving oral efficacy of anti-cancer drugs. The review focuses on different characterization techniques that can be employed for evaluation of lipid-based nanosystems and their role in effective anti-cancer drug delivery.  相似文献   

10.
Pempe EH  Burch TC  Law CJ  Liu J 《Glycobiology》2012,22(10):1353-1362
Heparan sulfate (HS) 6-O-endosulfatase (Sulf) catalyzes the hydrolysis of 6-O-sulfo groups from HS polysaccharides. The resultant HS has reduced sulfation levels and displays altered biological activities. The Sulfs have been associated with several cancers and developmental problems and could function as a tool for editing specific HS structures. Here, we characterize the substrate specificity of human Sulf-2 using site-specifically radiolabeled synthetic polysaccharides. The enzyme was expressed and harvested from the conditioned medium of Chinese hamster ovary cells transfected with Sulf-2 expression plasmids. The uniquely [(35)S]sulfated polysaccharides were prepared using purified recombinant HS biosynthetic enzymes. We found that Sulf-2 is particularly effective in removing the 6-O-sulfo group residing in the trisulfated disaccharide repeating unit comprising 2-O-sulfated uronic acid and N-sulfated 6-O-sulfo glucosamine, but can also hydrolyze sulfo groups from N- and 6-O-sulfated disaccharides. In addition, we found that Sulf-2 treatment significantly decreases HS's ability to bind to platelet factor 4 (PF4), a chemokine, while binding to antithrombin is maintained. Because HS-PF4 complexes are the initiating cause of heparin-induced thrombocytopenia, this finding provides a promising strategy for developing heparin therapies with reduced side effects. Further understanding of Sulf-2 activity will help elucidate HS structure-function relationships and provide a valuable tool in tailoring HS-based anticoagulant drugs.  相似文献   

11.
《Phytomedicine》2014,21(7):970-977
Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.  相似文献   

12.
Because multidrug resistance (MDR) is a serious impediment to the use of chemotherapy in treating cancer patients, great efforts have been made to search for effective MDR-reversing agents. We have developed a brand new synthetic ardeemin derivative, 5-N-formylardeemin, and investigated the activity of which in reversing MDR in MDR cancer cell lines derived from human breast cancer (MCF-7-R) or lung cancer (A549-R). 5-N-formylardeemin strongly enhanced the anti-cancer efficacy of doxorubicin, vincristine through potentiation of apoptosis in both MCF-7-R and A549-R at relatively noncytotoxic concentrations in vitro. Mechanistic studies showed that 5-N-formylardeemin inhibited the expression of MDR-1 (P-gp) and increased the intracellular accumulation of cytotoxic drugs in the MDR cells, suggesting that 5-N-formylardeemin reverses MDR activities through inhibiting MDR-1 expression. Interestingly, 5-N-formylardeemin also sensitized the parent wild-type cancer cells toward these chemotherapeutic agents to various extents. Importantly, in vivo studies demonstrated that 5-N-formylardeemin significantly improved the therapeutic effects of doxorubicin in nude mice bearing A549-R xenografts, which was associated with reduced expression of MDR-1 protein level and increased apoptosis in tumor tissues. These results underscore 5-N-formylardeemin as a potential sensitizer for chemotherapy against multidrug resistant cancers.  相似文献   

13.
While agents targeting estrogen receptors are most effective in adjuvant therapy for human breast cancers expressing estrogen receptors after surgery, breast cancers lacking estrogen receptor are clinically serious, because they are highly malignant and exhibit resistance to the usual anti-cancer drugs, including estrogen receptor-antagonists and DNA breaking agents. Here, we found that MX-1, a human breast cancer cell line lacking estrogen receptors, exhibited higher AP-1 activity and expressed higher levels of c-Jun, c-Fos, and Fra-1 when compared with conventional estrogen receptor-positive human breast cancer cell lines. The prenylphenol antibiotic ascochlorin suppressed the AP-1 activity of MX-1 cells, and selectively killed MX-1 cells, partly due to induction of apoptosis. Our results suggest that AP-1 is an effective clinical target molecule for the treatment of estrogen receptor-negative human breast cancer.  相似文献   

14.
3,3''-Diindolylmethane (DIM), a natural phytochemicals isolated from cruciferous vegetables, has been reported to inhibit human gastric cancer cells proliferation and induce cells apoptosis as well as autophagy, but its mechanisms are still unclear. Store-operated calcium entry (SOCE) is a main Ca2+ influx pathway in various of cancers, which is activated by the depletion of endoplasmic reticulum (ER) Ca2+ store. Stromal interaction molecular 1 (STIM1) is the necessary component of SOCE. In this study, we focus on to examine the regulatory mechanism of SOCE on DIM-induced death in gastric cancer. After treating the human BGC-823 and SGC-7901 gastric cancer cells with DIM, cellular proliferation was determined by MTT, apoptosis and autophagy were detected by flow cytometry or Hoechst 33342 staining. The expression levels of related proteins were evaluated by Western blotting. Free cytosolilc Ca2+ level was assessed by fluorescence monitoring under a laser scanning confocal microscope. The data have shown that DIM could significantly inhibit proliferation and induce apoptosis as well as autophagy in two gastric cancer cell lines. After DIM treatment, the STIM1-mediated SOCE was activated by upregulating STIM1 and decreasing ER Ca2+ level. Knockdown STIM1 with siRNA or pharmacological inhibition of SOCE attenuated DIM induced apoptosis and autophagy by inhibiting p-AMPK mediated ER stress pathway. Our data highlighted that the potential of SOCE as a promising target for treating cancers. Developing effective and selective activators targeting STIM1-mediated SOCE pathway will facilitate better therapeutic sensitivity of phytochemicals acting on SOCE in gastric cancer. Moreover, more research should be performed to validate the efficacy of combination chemotherapy of anti-cancer drugs targeting SOCE for clinical application.  相似文献   

15.
Mono-therapeutics is rarely effective as a treatment option, which limits the survival of patients in advanced grade aggressive cancers. Combinational therapeutics (multiple drugs for multiple targets) to combat cancer is gaining momentum in recent years. Hence, it is of interest to document known data for combinational therapeutics in cancer treatment. An amalgamation of therapeutic agents enhances the efficacy and potency of the therapy. Combinational therapy can potentially target multiple pathways that are necessary for the cancer cells to proliferate, and/or target molecules, which may help cancer to become more aggressive and metastasize. In this review, we discuss combinational therapeutics, which include human γδ T cells in combinations with biologically active anti-cancer molecules, which synergistically may produce promising combinational therapeutics.  相似文献   

16.
Lung and prostate cancers are major health problems worldwide. Treatments with standard chemotherapy agents are relatively ineffective. Combination chemotherapy gives better treatment than a single agent because the drugs can inhibit the cancer in different pathways, but new therapeutic agents are needed for the treatment of both tumor types. Bradykinin (BK) antagonists offer advantages of combination therapy in one compound. These promising multitargeted anti-cancer compounds selectively stimulate apoptosis in cancers and also inhibit both angiogenesis and matrix metalloprotease (MMP) action in treated lung and prostate tumors in nude mice. The highly potent, metabolism-resistant bradykinin antagonist peptide dimer, B-9870 [SUIM-(DArg-Arg-Pro-Hyp-Gly-Igl-Ser-DIgl-Oic-Arg)2] (SUIM=suberimidyl; Hyp=4-hydroxyproline; Igl=alpha-(2-indanyl)glycine; Oic=octahydroindole-2-carboxylic acid) and its non-peptide mimetic, BKM-570 [2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-L-tyrosine-N-(4-amino-2,2,6,6-tetramethylpiperidyl)amide] are superior to the widely used but toxic chemotherapeutic drugs cisplatin and taxotere. In certain combinations, they act synergistically with standard anti-cancer drugs. Due to its structure and biological activity, BKM-570 is an attractive lead compound for derivatization and evaluation for lung and prostate cancer drugs.  相似文献   

17.
HL Huang  HY Lee  AC Tsai  CY Peng  MJ Lai  JC Wang  SL Pan  CM Teng  JP Liou 《PloS one》2012,7(8):e43645
Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug.  相似文献   

18.
Mammalian reovirus is a benign virus that possesses the natural ability to preferentially infect and kill cancer cells (reovirus oncolysis). Reovirus exploits aberrant Ras signalling in many human cancers to promote its own replication and spread. In vitro and in vivo studies using reovirus either singly or in combination with anti-cancer drugs have shown very encouraging results. Presently, a number of reovirus combination therapies are undergoing clinical trials for a variety of cancers. Previously we showed that accumulation of the tumor suppressor protein p53 by Nutlin-3a (a specific p53 stabilizer) enhanced reovirus-induced apoptosis, and resulted in significantly higher levels of reovirus dissemination. In this study, we examined the role of p53 in combination therapies involving reovirus and chemotherapeutic drugs. We showed that sub-lethal concentrations of traditional chemotherapy drugs actinomycin D or etoposide, but not doxorubicin, enhanced reovirus-induced apoptosis in a p53-dependent manner. Furthermore, NF-κB activation and expression of p53-target genes (p21 and bax) were important for the p53-dependent enhancement of cell death. Our results show that p53 status affects the efficacy of combination therapy involving reovirus. Choosing the right combination partner for reovirus and a low dosage of the drug may help to both enhance reovirus-induced cancer elimination and reduce drug toxicity.  相似文献   

19.
Overexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.  相似文献   

20.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号