首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lignin-based fibers were produced by electrospinning aqueous dispersions of lignin, poly(vinyl alcohol) (PVA), and cellulose nanocrystals (CNCs). Defect-free nanofibers with up to 90 wt % lignin and 15% CNCs were achieved. The properties of the aqueous dispersions, including viscosity, electrical conductivity, and surface tension, were examined and correlated to the electrospinnability and resulting morphology of the composite fibers. A ternary lignin-PVA-water phase diagram was constructed as a tool to rationalize the effect of mixing ratios on the dispersion electrospinability and morphology of the resulting fibers. The influence of reinforcing CNCs on the thermal properties of the multicomponent fibers was investigated by using thermal gravimetric analysis and differential scanning calorimetry. The thermal stability of the system was observed to increase owing to a strong interaction of the lignin-PVA matrix with the dispersed CNCs, mainly via hydrogen bonding, as observed in Fourier transform infrared spectroscopy experiments.  相似文献   

2.
Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM's major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure.  相似文献   

3.
Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.  相似文献   

4.
The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr-Au, 3×3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO(2), NH(3)) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.  相似文献   

5.
Abstract

Feathers from poultry industries are considered a major pollutant and its degradation is a challenging problem due to its recalcitrant nature. The high cost of energy and loss of essential amino acids by conventional methods have paved a way for an environmentally benign approach using microbial keratinolytic proteases. The widespread application of keratinolytic proteases is limited due to autolysis and denaturation of the enzyme upon storage. Immobilization overcomes these disadvantages by adsorbing the enzyme onto a solid support. Recently, electrospun nanofibers have been used due to their increased surface area and porous structure. The biocompatible and hydrophilic polyvinyl alcohol (PVA) has been blended with biodegradable chitosan for immobilization in electrospinning. The present study focuses on feather degradation by immobilized keratinolytic proteases on electrospun nanofibers. The keratinolytic protease production was enhanced by using a media containing hydrolyzed feather under optimized conditions. The immobilized keratinolytic protease on electrospun PVA chitosan (PVA-Ch) nanofibers (100–150?nm diameter) degraded the chicken feathers with 88% efficiency at the end of 72?hr.  相似文献   

6.
Enzyme immobilization has attracted continuous attention in the fields of fine chemistry, biomedicine, and biosensor. The performance of immobilized enzyme largely depends on the structure of supports. Nanostructured supports are believed to be able to retain the catalytic activity as well as ensure the immobilization efficiency of enzyme to a high extent. Electrospinning provides a simple and versatile method to fabricate nanofibrous supports. Compared with other nanostructured supports (e.g. mesoporous silica, nanoparticles), nanofibrous supports show many advantages for their high porosity and interconnectivity. This review mainly discusses the recent advances in using nanofibers as hosts for enzyme immobilization by two different methods, surface attachment and encapsulation. Surface attachment refers to physical adsorption or covalent attachment of enzymes on pristine or modified nanofibrous supports, and encapsulation means electrospinning a mixture of enzyme and polymer. We make a detailed comparison between these two immobilization approaches and highlight their distinct characteristics. The prospective applications of enzyme immobilized electrospun nanofibers in the development of biosensors, biofuel cells and biocatalysts are also discussed.  相似文献   

7.
Morphological and surface properties of electrospun chitosan nanofibers   总被引:2,自引:0,他引:2  
Desai K  Kit K  Li J  Zivanovic S 《Biomacromolecules》2008,9(3):1000-1006
Nonwoven fiber mats of chitosan with potential applications in air and water filtration were successfully made by electrospinning of chitosan and poly(ethyleneoxide) (PEO) blend solutions. Electrospinning of pure chitosan was hindered by its limited solubility in aqueous acids and high degree of inter- and intrachain hydrogen bonding. Nanometer-sized fibers with fiber diameter as low as 80 +/- 35 nm without bead defects were made by electrospinning high molecular weight chitosan/PEO (95:5) blends. Fiber formation was characterized by fiber shape and size and was found to be strongly governed by the polymer molecular weight, blend ratios, polymer concentration, choice of solvent, and degree of deacetylation of chitosan. Weight fractions of polymers in the electrospun nonwoven fibers mats were determined by thermal gravimetric analysis and were similar to ratio of polymers in the blend solution. Surface properties of fiber mats were determined by measuring the binding efficiency of toxic heavy metal ions like chromium, and they were found to be related with fiber composition and structure.  相似文献   

8.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

9.
Electrospinning is a versatile method to fabricate nanofibers of a range of polymeric and composite materials suitable as scaffolds for tissue engineering applications. In this study, we report the fabrication and characterization of polyaniline-carbon nanotube/poly(N-isopropyl acrylamide-co-methacrylic acid) (PANI-CNT/PNIPAm-co-MAA) composite nanofibers and PNIPAm-co-MAA nanofibers suitable as a three-dimensional (3D) conducting smart tissue scaffold using electrospinning. The chemical structure of the resulting nanofibers was characterized with FTIR and (1)H NMR spectroscopy. The surface morphology and average diameter of the nanofibers were observed by SEM. Cellular response of the nanofibers was studied with mice L929 fibroblasts. Cell viability was checked on 7th day of cell culture by double staining the cells with calcein-AM and PI dye. PANI-CNT/PNIPAm-co-MAA composite nanofibers were shown the highest cell growth and cell viability as compared to PNIPAm-co-MAA nanofibers. Cell viability in the composite nanofibers was obtained in order of 98% that indicates the composite nanofibers provide a better environment as a 3D scaffold for the cell proliferation and attachment suitable for tissue engineering applications.  相似文献   

10.
A blend mixture of biodegradable poly(epsilon-caprolactone) (PCL) and poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol)-NH(2) (PLGA-b-PEG-NH(2)) block copolymer was electrospun to produce surface functionalized nanofibers. The resulting nanofibrous mesh with primary amine groups on the surface was applied for immobilization of biologically active molecules using lysozyme as a model enzyme. Lysozyme was immobilized via covalent conjugation by using a homobifunctional coupling agent. The nanofibrous mesh could immobilize a far greater amount of lysozyme on the surface with concomitantly increased activity, primarily due to its larger surface area, compared to that of the solvent casting film. It was also found that the enzyme immobilization process slightly altered thermal and pH-dependent catalytic activity profiles compared to those of native lysozyme. The results demonstrated the surface functionalized electrospun nanofibrous mesh could be used as a promising material for immobilizing a wide range of bioactive molecules.  相似文献   

11.
In this study, a biological evaluation of the antimicrobial activity of Zn-doped titania nanofibers was carried out using Escherichia coli ATCC 52922 (Gram negative) and Staphylococcus aureus ATCC 29231 (Gram positive) as model organisms. The utilized Zn-doped titania nanofibers were prepared by the electrospinning of a sol–gel composed of zinc nitrate, titanium isopropoxide, and polyvinyl acetate; the obtained electrospun nanofibers were vacuum dried at 80°C and then calcined at 600°C. The physicochemical properties of the synthesized nanofibers were determined by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, and transmission electron microscopy (TEM). The antibacterial activity and the acting mechanism of Zn-doped titania nanofibers against bacteria were investigated by calculation of minimum inhibitory concentration and analyzing the morphology of the bacterial cells following the treatment with nanofibers solution. Our investigations reveal that the lowest concentration of Zn-doped titania nanofibers solution inhibiting the growth of S. aureus ATCC 29231 and E. coli ATCC 52922 strains is found to be 0.4 and 1.6 μg/ml, respectively. Furthermore, Bio-TEM analysis demonstrated that the exposure of the selected microbial strains to the nanofibers led to disruption of the cell membranes and leakage of the cytoplasm. In conclusion, the combined results suggested doping promotes antimicrobial effect; synthesized nanofibers possess a very large surface-to-volume ratio and may damage the structure of the bacterial cell membrane, as well as depress the activity of the membranous enzymes which cause bacteria to die in due course.  相似文献   

12.
In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers   总被引:2,自引:1,他引:2  
CdS nanoparticles have been synthesized and stabilized on unique bacterial cellulose (BC) nanofibers in situ. The obtained nanocomposite material have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transformed infrared (FTIR), thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy. The results indicated that CdS nanoparticles of about 30 nm diameter deposited on BC nanofibres are well-dispersed in the BC nanofibre-network and the uniform spherical CdS nanoparticles are comprised of nano-sized CdS crystal. Moreover, the crystallite sizes of CdS crystals are about 8 nm. The nanocomposites would have potential application as photocatalyst, novel luminescence and photoelectron transfer devices.  相似文献   

13.
Antimicrobial cellulose acetate nanofibers containing silver nanoparticles   总被引:11,自引:0,他引:11  
It was found for the first time that polymer nanofibers containing Ag nanoparticles on their surface could be produced by UV irradiation of polymer nanofibers electrospun with small amounts of silver nitrate (AgNO3). When the cellulose acetate (CA) nanofibers electrospun from CA solutions with 0.5 wt% of AgNO3 were irradiated with UV light at 245 nm, Ag nanoparticles were predominantly generated on the surface of the CA nanofibers. The number and size of the Ag nanoparticles were continuously increased up to 240 min. The Ag+ ions and Ag clusters diffused and aggregated on the surface of the CA nanofibers during the UV irradiation. The Ag nanoparticles with an average size of 21 nm exhibited strong antimicrobial activity.  相似文献   

14.
Tang C  Ozcam AE  Stout B  Khan SA 《Biomacromolecules》2012,13(5):1269-1278
We examine the protein distribution within an electrospun polymer nanofiber using polyvinyl alcohol and bovine serum albumin as a model system. We hypothesize that the location of the protein within the nanofiber can be controlled by carefully selecting the pH and the applied polarity of the electric field as the pH affects the net charge on the proteins. Using fluorescently labeled BSA and surface analysis, we observe that the distribution of BSA is affected by the pH of the electrospinning solution. Therefore, we further probe the relevant forces on the protein in solution during electrospinning. The role of hydrodynamic friction was assessed using glutaraldehyde and HCl as a tool to modify the viscosity of the solution during electrospinning. By varying the pH and the polarity of the applied electric field, we evaluated the effects of electrostatic forces and dielectrophoresis on the protein during fiber formation. We surmise that electrostatic forces and hydrodynamic friction are insignificant relative to dielectrophoretic forces; therefore, it is possible to separate species in a blend using polarizability contrast. A coaxial distribution of protein in the core can be obtained by electrospinning at the isoelectric point of the protein, whereas surface enrichment can be obtained when the protein carries a net charge.  相似文献   

15.
Keratin regenerated from wool and fibroin regenerated from silk were mixed in different proportions using formic acid as the common solvent. Both solutions were cast to obtain films and electrospun to produce nanofibers. Scanning electron microscopy investigation showed that, for all electrospun blends (except for 100% keratin where bead defects are present), the fiber diameter of the mats ranged from 900 (pure fibroin) to 160 nm (pure keratin). FTIR and DSC analysis showed that the secondary structure of the proteins was influenced by the blend ratios and the process used (casting or electrospinning). Prevalence of beta-sheet supramolecular structures was observed in the films, while proteins assembled in alpha-helix/random coil structures were observed in nanofibers. Higher solution viscosity, thinner filaments, and differences in the thermal and structural properties were observed for the 50/50 blend because of the enhanced interactions between the proteins.  相似文献   

16.
The effect of nanofiber surface coatings on the cell's proliferation behavior was studied. Individually collagen-coated poly(epsilon-caprolactone) (PCL) nanofibers (i.e., Collagen-r-PCL in the form of a core-shell structure) were prepared by a coaxial electrospinning technique. A roughly collagen-coated PCL nanofibrous matrix was also prepared by soaking the PCL matrix in a 10 mg/mL collagen solution overnight. These two types of coated nanofibers were then used to investigate differences in biological responses in terms of proliferation and cell morphology of human dermal fibroblasts (HDF). It was found that coatings of collagen on PCL nanofibrous matrix definitely favored cells proliferation, and the efficiency is coating means dependent. As compared to PCL, the HDF density on the Collagen-r-PCL nanofiber membrane almost increased linearly by 19.5% (2 days), 22.9% (4 days), and 31.8% (6 days). In contrast, the roughly collagen-coated PCL increased only by 5.5% (2 days), 11.0% (4 days), and 21.0% (6 days). SEM observation indicated that the Collagen-r-PCL nanofibers encouraged cell migration inside the scaffolds. These findings suggest that the Collagen-r-PCL nanofibers can be used as novel functional biomimetic nanofibers toward achieving excellent integration between cells and scaffolds for tissue engineering applications.  相似文献   

17.
Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.  相似文献   

18.
Plant cell walls combine mechanical stiffness, strength and toughness despite a highly hydrated state. Inspired by this, a nanostructured cellulose network is combined with an almost viscous polysaccharide matrix in the form of a 50/50 amylopectin-glycerol blend. Homogeneous films with a microfibrillated cellulose (MFC) nanofiber content in the range of 10-70 wt % are successfully cast. Characterization is carried out by dynamic mechanical analysis, field-emission scanning electron microscopy, X-ray diffraction, and mercury density measurements. The MFC is well dispersed and predominantly oriented random-in-the-plane. High tensile strength is combined with high modulus and very high work of fracture in the nanocomposite with 70 wt % MFC. The reasons for this interesting combination of properties include nanofiber and matrix properties, favorable nanofiber-matrix interaction, good dispersion, and the ability of the MFC network to maintain its integrity to a strain of at least 8%.  相似文献   

19.
《Process Biochemistry》2010,45(10):1713-1719
Cibacron Blue F3GA (CB) was covalently attached onto the bacterial cellulose (BC) nanofibers for human serum albumin (HSA) depletion from human serum. The BC nanofibers were produced by Acetobacter xylinum in the Hestrin–Schramm medium in a static condition for 14 days. The CB content of the BC nanofibers was 178 μmol/g. The specific surface area of the BC nanofibers was determined to be 914 m2/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA on the BC nanofibers was very low (1.4 mg/g polymer). CB attachment onto the BC nanofibers significantly increased the HSA adsorption (1800 mg/g). The maximum HSA adsorption was observed at pH 5.0. The HSA adsorption capacity decreased drastically with an increase of the aqueous phase concentration of sodium chloride. The elution studies were performed by adding 1 M NaCl to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the binding of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 96.5% for all studied concentrations. Proteins in the serum and eluted portion were analyzed by SDS-PAGE for testing the efficiency of HSA depletion from human serum. Eluted proteins include mainly HSA.  相似文献   

20.
Wood cellulose was converted to individual nanofibers of approximately 4 nm width and 380-570 nm average length by TEMPO-mediated oxidation. The TEMPO-oxidized cellulose nanofibers (TOCNs) were orally administered with glucose and glyceryl trioleate to mice and postprandial responses of blood glucose, insulin, glucose-dependent insulinotropic polypeptide (GIP), and triglycerides were studied. Both blood insulin and GIP concentrations were decreased by TOCN with a carboxyl content and aspect ratio of 1.2 mmol g(-1) and 120, respectively, in dose-dependent manners (0-0.3 mg g(-1) body weight). Of the TOCNs examined, that with a carboxyl content and aspect ratio of 1.2 mmol g(-1) and 120, respectively, was the most effective in reducing postprandial blood glucose, plasma insulin, GIP, and triglyceride concentrations. Thus, TOCNs were found to exhibit characteristic biological activities when administered to mice and may have potential applications in biomedical fields for human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号