首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iodine has been used as an effective tool for studying both the structure and composition of dispersed starch and starch granules. In addition to being employed to assess relative amylose contents for starch samples, it has been used to look at the molecular mobility of the glucose polymers within intact starch granules based on exposure to iodine vapor equilibrated at different water activities. Starches of different botanical origin including corn, high amylose corn, waxy corn, potato, waxy potato, tapioca, wheat, rice, waxy rice, chick pea and mung bean were equilibrated to 0.33, 0.75, 0.97 water activities, exposed to iodine vapor and then absorbance spectra and LAB color were determined. In addition, a new iodine quantification method sensitive to <0.1% iodine (w/w) was employed to measure bound iodine within intact granular starch. Amylose content, particle size distribution of granules, and the density of the starch were also determined to explore whether high levels of long linear glucose chains and the surface area-to-volume ratio were important factors relating to the granular iodine binding. Results showed, in all cases, starches complexed more iodine as water content increased and waxy starches bound less iodine than their normal starch counterparts. However, much more bound iodine could be measured chemically with waxy starches than was expected based on colorimetric determination. Surface area appeared to be a factor as smaller rice and waxy rice starch granules complexed more iodine, while the larger potato and waxy potato granules complexed less than would be expected based on measured amylose contents. Corn, high amylose corn, and wheat, known to have starch granules with extensive surface pores, bound higher levels of iodine suggesting pores and channels may be an important factor giving iodine vapor greater access to bind within the granules. Exposing iodine vapor to moisture-equilibrated native starches is an effective tool to explore starch granule architecture.  相似文献   

2.
Starch acetates and starch butyrates with degree of substitution (DS) in the range of 0.06–1.54 were prepared by a simple direct solvent-free organocatalytic methodology of starch acylation. The starch esters synthesized have important applications in the food and pharmaceutical industries, among others. The acylation methodology used involves a non-toxic biobased α-hydroxycarboxylic acid as catalyst, and proceeds with high efficiency in absence of solvents. The effect of reaction time on the advance of starch modification was studied as a simple way to control the level of substitution achieved, when all other reaction parameters were kept constant. Starch esters were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectroscopy qualitatively confirmed the esterification of starch by the appearance of bands which are associated with esters groups. Scanning electron microscopy showed that the granular structure of the polysaccharide was preserved upon acylation, although acylated granules had rougher surfaces; and wrinkles, grooves and deformed zones appeared in some granules at high DS. Thermogravimetric analysis showed a gradual reduction in the water content of acylated starches, as well as noticeable changes in their thermal properties at increasing DS. X-ray diffraction analysis showed that the acetylation treatment led to lower crystallinity at increasing DS, although characteristic corn starch A-type patterns could be identified even at the highest DS achieved (DS = 1.23). Specific bands and weight losses derived from FTIR and TGA data could be very well correlated with the substitution degree achieved in acetylated starches at DS lower/equal than 0.6. The organocatalytic methodology described for the synthesis of starch acetates and butyrates has the potential to be easily extended to the synthesis of other starch esters using a variety of anhydrides or carboxylic acids as acylating agents  相似文献   

3.
Acetylated corn starch (ACS) was synthesized by the reaction of native corn starch (NCS) with acetic anhydride (AA) in an aqueous medium in the presence of sodium hydroxide as a catalyst. The factors that could affect the degree of substitution (DS) and reaction efficiency (RE) of corn starch were investigated which included the reaction temperature and time, the mass ratio of AA to starch, the ratio of the water volume to starch mass and pH. The optimal DS of 0.071 and RE of 67.05% was obtained. FTIR spectrometry showed new bands at 1733, 1375 and 1252 cm(-1). The SEM of the ACS indicated some cavities on the granules which fused together, compared with NCS. Wide angle X-ray diffraction revealed that ACS had a similar profile as NCS (A type). However, the intensity of peaks were diminished. DSC thermograms exhibited that ACS had some lower gelatinization temperatures and enthalpies than NCS. The functional properties of ACS such as the swelling power, solubility, water absorption, clarity, freeze-thaw stability, retrogradation and viscosity were also studied. The results suggest that the ACS has much better functional properties than the NCS, and could be expected to have wide applications especially in food industry.  相似文献   

4.
The flow behavior of native corn and potato starch granule suspensions prepared in a concentrated sucrose solution has been investigated. Measurements were performed using a rotational rheometer with a concentric cylinder geometry. Starch suspensions were dilute to semi-concentrated (1 % to 25 % by volume). Shear and dynamic viscosity were measured by shear flow and dynamic oscillatory testing at 20, 50 and 80 °C. The starch suspensions exhibited essentially Newtonian behavior at all solid contents, although at higher solid volume fractions there was evidence of slight shear thickening. The relative viscosity of suspensions increased with increasing starch granule content, and the data conformed well to Maron-Pierce’s equation. An increase in maximum packing fraction and gravitational depletion of the starch granules with increasing temperature resulted in lower relative viscosities at higher temperatures. Also, the relative viscosities of potato starch granule suspensions with bigger, more oval and anisometric particles were lower than those of corn starch suspensions where granules were closer to sphericity but were angular in shape. Oscillatory shear testing results showed the presence of viscoelastic properties at intermediate solid volume fractions at low frequencies; in addition, the relative shear viscosity was higher than the relative dynamic viscosity, probably due to the formation of shear-induced structures during the shear flow test.  相似文献   

5.
Banana starch structure and digestibility   总被引:1,自引:0,他引:1  
It is well known that raw banana starch is a good source of resistant starch. Less is known, however, regarding the digestion property of gelatinized banana starch. In this study, banana starch cooked for 20 min in excess water had a significant fraction of slowly digestible starch (19%), as well as resistant fraction (27%). Amylopectin is thought to be responsible for its slow digestion property, since banana starch studied here has a relatively low amylose content of 11.2%. Chain-length distribution analysis revealed that banana amylopectin has a significantly different structure from corn or potato amylopectin in that it has a higher proportion of very long chains. Retrogradation studies support the view that banana starch retrogrades at a substantially faster rate than corn or potato starch leading to less digestible cooked starch. Additionally, banana starch has unique pasting properties making it behave like a chemically lightly cross-linked starch. Banana starch is unique, both nutritionally and functionally, to warrant further investigation on potential commercial uses.  相似文献   

6.
This article reports the development of fibers from starch acetates that have mechanical properties and water stability better than most polysaccharide‐based biomaterials and protein fibers used in tissue engineering. In this research, starch acetates with three different degrees of substitution (DS) have been used to develop fibers for potential use as tissue engineering scaffolds. Varying the DS of starch acetate will provide fibers with different mechanical properties, hydrophilicity, and degradation behavior. Fibers made from DS 2.3 and 2.8 starch acetates have mechanical properties and water stability required for tissue engineering applications. The starch acetate fibers support the adhesion of fibroblasts demonstrating that the fibers would be suitable for tissue engineering and other medical applications. Biotechnol. Bioeng. 2009;103: 1016–1022. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
The general oxidation mechanism by hypochlorite on starch has been well studied, but the information on the distribution of the oxidation sites within starch granules is limited. This study investigated the locations where the oxidation occurred within corn starch granules varying in amylose content, including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starch (AMC). Oxidized corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The surface-gelatinized remaining granules were separated and studied for structural characteristics including carboxyl content, amylose content, amylopectin chain-length distribution, thermal properties, and swelling properties. Oxidation occurred mostly at the amorphous lamellae. More carboxyl groups were found at the periphery than at the core of starch granules, which was more pronounced in oxidized 70% AMC. More amylose depolymerization from oxidation occurred at the periphery of CC. For WC and CC, amylopectin long chains (>DP 36) were more prone to depolymerization by oxidation. The gelatinization properties as measured by differential scanning calorimetry also supported the changes in amylopectin fine structure from oxidation. Oxidized starches swelled to a greater extent than their unmodified counterparts at all levels of surface removal. This study demonstrates that the locations of oxidation and physicochemical properties of oxidized starches are affected by the molecular arrangement within starch granules.  相似文献   

8.
Potential roles of ultra high pressure (UHP) in starch granule reactivity and properties of acetylated starch were investigated. Corn starch was substituted with acetic anhydride at pressure range of 0.1–400 MPa for 15 min; also, conventional reaction (30 °C, 60 min) was conducted as reaction control. Native and acetylated corn starches were assessed with respect to degree of substitution (DS), X-ray diffraction pattern/relative crystallinity, starch solubility/swelling power, gelatinization, and pasting behavior. For the UHP-assisted acetylated starches, DS values increased along with increasing pressure levels from 200 to 400 MPa, and reaction at 400 MPa exhibited maximum reactivity (though lower than the DS value of the reaction control). Both UHP-assisted and conventional acetylation of starch likely occurred predominantly at amorphous regions within granules. Gelatinization and pasting properties of the UHP-assisted acetylated starches may be less influenced by UHP treatment in acetylation reaction, though restricted starch solubility/swelling were observed.  相似文献   

9.
Shogren R 《Biomacromolecules》2007,8(11):3641-3645
The effect of orientation on the properties of amylose and starch films was studied in order to determine if film strength, flexibility, and water resistance could be improved. Potato amylose and high (70%) amylose corn starch were peracetylated, cast into films, stretched in hot glycerol 1-6 times the original length, and deacetylated. Molecular orientation of potato amylose films was much higher than for high-amylose corn starch films as determined by optical birefringence. For potato amylose films, orientation resulted in large increases in tensile strength and elongation but little change in modulus. For high-amylose corn starch films, tensile strength and modulus did not change with draw ratio but elongation to break increased from about 8% to 27% as draw ratio increased from 1 to 5. Scanning electron micrographs revealed many small crazes in the drawn starch films, suggesting that the improved film toughness was due to energy dissipation during deformation of the crazes. Annealing of drawn films at 100% humidity resulted in partial crystallization and improved wet strength.  相似文献   

10.
The effect of UV-irradiation on four different types of native starch (corn, waxy corn, wheat and potato) have been investigated. Although the changes in the chemical structure of starch specimens were small, indicating good photostability, the samples lost adsorbed water and their crystallinity degree decreased after irradiation. Moreover, a drop in average molecular weight occurred in samples (with the exception of potato starch) as a result of main chain scission. The variations in the properties of investigated specimens of various origin were related to the differences in their structure and macromolecular arrangement. The lowest photostability among the four starches was exhibited by potato starch.  相似文献   

11.
The effects of free fatty acids on the selectivity and thermal properties of starch samples incorporating free fatty acids were examined by DSC. An analysis of the free fatty acid values incorporated into cassava starch and potato starch shows that myristic acid was the highest and linoleic acid was the lowest, while the free fatty acid values of corn starch were significantly higher than those of the other starches. DSC measurements on corn starch show an initial peak and another peak in a higher-temperature region, this second peak differing according to the incorporated free fatty acid. It is thus considered that the state of the complex of each free fatty acid with amylose might be better understood by observing the respective DSC characteristics.  相似文献   

12.
Relationships between swelling capacities, pasting properties, rotational flow behaviour and textural properties of hydro-thermally heated wet-milled starch granules from corn dried between 60 and 130 °C were investigated. High-drying temperatures applied during the corn drying process conferred to the wet-milled starch granules (WSG) such a rigidity which reduced their swelling capacities, their water binding capacities and their water solubility index after gelatinization. These granules changes affected their pasting characteristics, their flow behaviour and several textural parameters of gel formed from the wet-milled starch granule after gelatinization. The rigidity of granules was a major factor determining the formation of either starch pastes or gels.  相似文献   

13.
In order to modify the properties of native starch granules, the formation of gelatinized granular forms (GGS) from normal, waxy, and high amylose maize, as well as potato and tapioca starches was investigated by treating granules with aqueous ethanol at varying starch:water:ethanol ratios and then heating in a rotary evaporator to remove ethanol. The modified starches were characterized using bright field, polarized and electron microscopy. Short/long range molecular order and enthalpic transitions on heating were also studied using infrared spectroscopy, X-ray diffractometry and differential scanning calorimetry respectively. A diffuse birefringence pattern without Maltese cross was observed for most GGS samples. Treatment with aqueous ethanol resulted in starch-specific changes in the surface of granules, most noticeably swelling and disintegration in waxy maize, surface wrinkling in normal maize and tapioca, swelling and opening-up in potato starches, and swelling and bursting in high amylose maize. The ratio of ethanol to water at which original granular order was disrupted also varied with starch type. GGS had less short range molecular order than native granules as inferred by comparing 1047/1022 wave number ratio from infrared spectroscopy. Similarly, A- and B-type diffraction reflections were either reduced or completely lost with evolution of V-type patterns in GGS.  相似文献   

14.
An active derivative (mol. wt. 48,000) of Aspergillus sp. K-27 glucoamylase (mol. wt. 76,000) was obtained by limited proteolysis with subtilisin. The amino acid sequences of native and modified enzymes at the N-termini were Ala-Gly-Gly-Thr-Leu-Asp and Ala-Val-Leu, respectively. The proteolysis greatly decreased the affinity of the enzyme for amylopectin and glycogen, but not for oligosaccharides. It also reduced the ability of the enzyme to degrade raw starch, abolished the ability of the enzyme to adsorb onto starch granules, and eliminated the synergistic action of the enzyme in the hydrolysis of starch granules with alpha-amylase. These findings imply that the enzyme has a specific affinity site for polysaccharide substrates besides the catalytic site, i.e., a starch-binding site, and that the former is removed by proteolysis. The extent of the reduction in the activity for raw starches caused by the modification varied with the starch source, as the modified enzyme digested raw potato starch better than either raw corn or sweet potato starches. A new method for evaluation of the raw starch-digesting activity of glucoamylase is described.  相似文献   

15.

Main conclusion

Expression of amylosucrase in potato resulted in larger starch granules with rough surfaces and novel physico-chemical properties, including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. Starch is a very important carbohydrate in many food and non-food applications. In planta modification of starch by genetic engineering has significant economic and environmental benefits as it makes the chemical or physical post-harvest modification obsolete. An amylosucrase from Neisseria polysaccharea fused to a starch-binding domain (SBD) was introduced in two potato genetic backgrounds to synthesize starch granules with altered composition, and thereby to broaden starch applications. Expression of SBD–amylosucrase fusion protein in the amylose-containing potato resulted in starch granules with a rough surface, a twofold increase in median granule size, and altered physico-chemical properties including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. These effects are possibly a result of the physical interaction between amylosucrase and starch granules. The modified larger starches not only have great benefit to the potato starch industry by reducing losses during starch isolation, but also have an advantage in many food applications such as frozen food due to its extremely high freeze–thaw stability.  相似文献   

16.
A fungal strain (S33-2), able to grow on cooked starch and produce a substantially high level of kojic acid, was isolated from morning glory flower ( Bixa orellana ). The fungus was characterized and identified as Aspergillus flavus. The effect of different types of starch (sago, potato and corn starch) on growth of strain S33-2 and kojic acid production was examined using shake flasks. It was found that strain S33-2 grew well on all types of starch investigated. However, kojic acid production was highest when corn starch was used, with the maximum kojic acid obtained being comparable to fermentation using glucose. The highest kojic acid production (19·2 g l−1) was obtained when 75 g l−1 corn starch was used. This gave a yield, based on starch consumed, and an overall productivity of 0·256 g g−1 and 0·04 g l−1 h−1, respectively.  相似文献   

17.
Sucrose fatty acid esters (SFAE) were adsorbed onto dry-heated (120?°C for 10, 20, 40, 60, and 120?min) wheat starch granules and extracted with ethyl ether in a Soxhlet apparatus without gelatinization of the starch granules. The amount of sucrose in the extracted SFAE was determined by the phenol sulfate method. A gradual increase of the sucrose from 159 to 712?μg, in SFAE per gram of starch, occurred with increasing dry-heating time and demonstrated the increased hydrophobicity of the starch granules. Increase of the SFAE was highly correlated (r?=?0.9816) to increase of the oil-binding capacity of the dry-heated wheat starch granules. Non-waxy rice, waxy rice, sweet potato, and potato starch granules also showed higher hydrophobicity after dry-heating by this method.  相似文献   

18.
The effects of incorporating various montmorillonite nanoclays into wheat, potato, corn, and waxy corn starch samples were examined by rheology and X-ray diffraction. The nanoclays included the hydrophilic Cloisite Na+ clay as well as the more hydrophobic Cloisite 30B, 10A, and 15A clays. Frequency sweep and creep results for wheat starch–nanoclay samples at room temperature indicated that the Cloisite Na+ samples formed more gel-like materials than the other nanoclay samples. X-ray diffraction results showed no intercalation of Cloisite Na+ clays at room temperature, suggesting that starch granules interacted only with the clay surface and not the interlayer. When the various wheat starch–nanoclay samples were heated to 95 °C, the Cloisite Na+ samples exhibited a large increase in modulus. In contrast, the more hydrophobic nanoclay samples had comparable modulus values to the neat starch sample. These results suggested that during gelatinization, the leached amylose interacted with the Cloisite Na+ interlayer, producing better reinforcement and higher modulus values. X-ray diffraction results supported this interpretation since the data showed greater intercalation of Cloisite Na+ clay in the gelatinized samples. The samples containing wheat and corn starch showed comparable elastic modulus values during gelatinization. However, the potato and waxy corn samples had modulus values that rapidly decreased at higher temperatures.  相似文献   

19.
《Process Biochemistry》2007,42(3):462-465
Under the optimal conditions, 10 U/ml of glucoamylase was produced by the marine yeast Aureobasidium pullulans N13d. It was noticed that the crude glucoamylase actively hydrolyzed potato starch granules, but poorly digested raw corn starch and sweet potato starch, resulting in conversion of 68.5, 19 and 22% of them into glucose within 6 h of incubation in the presence of 40 g/l of potato starch granules and 20 U/ml of the crude enzyme. When potato starch granules concentration was increased from 10 to 80 g/l, hydrolysis extent was decreased from 85.6 to 60%, while potato starch granules concentration was increased from 80 to 360 g/l, hydrolysis extent was decreased from 60 to 56%. Ratio of hydrolysis extent of potato starch granules to hydrolysis extent of gelatinized potato starch was 86.0% and the hydrolysis extent of potato starch granules by action of the crude glucoamylase (1.0 U/ml) was 18.5% within 30 min at 60 °C. Only glucose was detected during the hydrolysis, indicating that the crude enzyme could hydrolyze both α-1,4 and α-1,6 linkages of starch molecule in the potato starch.  相似文献   

20.
Sorption of terpenoids (essential oil components) from aqueous solutions by six types of native food starches was studied by capillary gas chromatography. Sorption of volatile substances did not depend on amylose content in starch and specific surface of its granules. The degree of sorption was maximum (86%) for corn starch containing 25–28% amylose and decreased in the following order: tapioca starch (77%) > potato starch (74%) > wheat starch (70%) > high-amylose corn starch (58%) > amylopectin corn starch (57%). Amylopectin corn starch differed from other starches in the mechanism of sorption and selectivity to compounds with various functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号