首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine proteases of the Chymotrypsin family are structurally very similar but have very different substrate preferences. This study investigates a set of 9 different proteases of this family comprising proteases that prefer substrates containing positively charged amino acids, negatively charged amino acids, and uncharged amino acids with varying degree of specificity. Here, we show that differences in electrostatic substrate preferences can be predicted reliably by electrostatic molecular interaction fields employing customized GRID probes. Thus, we are able to directly link protease structures to their electrostatic substrate preferences. Additionally, we present a new metric that measures similarities in substrate preferences focusing only on electrostatics. It efficiently compares these electrostatic substrate preferences between different proteases. This new metric can be interpreted as the electrostatic part of our previously developed substrate similarity metric. Consequently, we suggest, that substrate recognition in terms of electrostatics and shape complementarity are rather orthogonal aspects of substrate recognition. This is in line with a 2‐step mechanism of protein‐protein recognition suggested in the literature.  相似文献   

2.
The peptide bond formation of N-protected non-coded amino acids having different structures as acyl donor substrates that is catalyzed by thermoase in organic media was investigated. In these reactions, N-protected l--non-coded amino acids, including l-Orn, l-Cit, -aminobutyric acid (l--Abu) and phenylalanine homologues, were used as the acyl donors and phenylalanine derivatives were used as the acyl acceptors. This kind of enzymatic reactions cannot be carried out in an aqueous buffer due to the rigid specificity of proteases to coded amino acids in water. The results demonstrated that the substrate specificity of proteases could be broadened in organic solvents. In addition, the factors that influenced these protease-catalyzed reactions, including structures of the substrates, water content and the bases used, were systematically studied. Our work provided important evidence for broadening the application of protease in organic synthesis.  相似文献   

3.
4.
Although the alpha-chymases of primates and dogs are known as chymotrypsin-like proteases, the enzymatic properties of rodent alpha-chymases (rat mast cell protease 5/rMCP-5 and mouse mast cell protease 5/mMCP-5) have not been fully understood. We report that recombinant rMCP-5 and mMCP-5 are elastase-like proteases, not chymotrypsin-like proteases. An enzyme assay using chromogenic peptidyl substrates showed that mast cell protease-5s (MCP-5s) have a clear preference for small aliphatic amino acids (e.g. alanine, isoleucine, valine) in the P1 site of substrates. We used site-directed mutagenesis and computer modeling approaches to define the determinant residue for the substrate specificity of mMCP-5, and found that the mutant possessing a Gly substitution of the Val at position 216 (V216G) lost elastase-like activity but acquired chymase activity, suggesting that the Val216 dominantly restricts the substrate specificity of mMCP-5. Structural models of mMCP-5 and the V216G mutant based on the crystal structures of serine proteases (rMCP-2, human cathepsin G, and human chymase) revealed the active site differences that can account for the marked differences in substrate specificity of the two enzymes between elastase and chymase. These findings suggest that rodent alpha-chymases have unique biological activity different from the chymases of other species.  相似文献   

5.
Identification of synthetic peptide substrates for novel peptidases is an essential step for their study. With this purpose we synthesized fluorescence resonance energy transfer (FRET) peptide libraries Abz (or MCA)-GXXXXXQ-EDDnp and Abz (or MCA)-GXXZXXQ-EDDnp, where X consists of an equimolar mixture of all amino acids, the Z position is fixed with one of the proteinogenic amino acids (cysteine was excluded), Abz (ortho-aminobenzoic acid) or MCA ([7-amino-4-methyl]coumarin) is the fluorescence donor and Q-EDDnp (glutamine-[N-(2,4-dinitrophenyl)-ethylenediamine]) is the fluorescence acceptor. The peptide libraries MCA-GXXX↓XXQ-EDDnp and MCA-GXXZ↓XXQ-EDDnp were cleaved as indicated (↓) by trypsin, chymotrypsin, cathepsin L, pepsin A, and Eqolisin as confirmed by Edman degradation of the products derived from the digestion of these libraries. The best hydrolyzed Abz-GXXZXXQ-EDDnp sublibraries by these proteases, including Dengue 2 virus NS2B-NS3 protease, contained amino acids at the Z position that are reported to be well accepted by their S(1) subsite. The pH profiles of the hydrolytic activities of these canonical proteases on the libraries were similar to those reported for typical substrates. The FRET peptide libraries provide an efficient and simple approach for detecting nanomolar concentrations of endopeptidases and are useful for initial specificity characterization as performed for two proteases secreted by a Bacillus subtilis.  相似文献   

6.
Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.  相似文献   

7.
Cathepsin S (CatS) is a lysosomal cysteine protease belonging to the papain superfamily. Because of the relatively broad substrate specificity of this family, a specific substrate for CatS is not yet known. Based on a detailed study of the CatS endopeptidase specificity, using six series of internally quenched fluorescent peptides, we were able to design a specific substrate for CatS. The peptide series was based on the sequence GRWHTVGLRWE-Lys(Dnp)-DArg-NH2, which shows only one single cleavage site between Gly and Leu and where every substrate position between P-3 and P-3' was substituted with up to 15 different amino acids. The endopeptidase specificity of CatS was mainly determined by the P-2, P-1', and the P-3' substrate positions. Based on this result, systematically modified substrates were synthesized. Two of these modified substrates, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2 and Mca-GRWHPMGAPWE-Lys(Dnp)-DArg-NH2, did not react with the purified cysteine proteases cathepsin B (CatB) and cathepsin L (CatL). Using a specific CatS inhibitor, we could further show that these two peptides were not cleaved by endosomal fractions of antigen presenting cells (APCs), when CatS was inhibited and related cysteine proteases cathepsin B, H, L and X were still active. Although aspartic proteases like cathepsin E and cathepsin D were also present, our substrates were suitable to quantify cathepsin S activity specifically in APCs, including B cells, macrophages, and dendritic cells without the use of any protease inhibitor. We find that CatS activity differs significantly not only between the three types of professional APCs but also between endosomal and lysosomal compartments.  相似文献   

8.
Fibroblast activation protein (FAP) is a serine protease of undefined endopeptidase specificity implicated in tumorigenesis. To characterize FAP's P(4)-P(2)(') specificity, we synthesized intramolecularly quenched fluorescent substrate sets based on the FAP cleavage site in alpha(2)-antiplasmin (TSGP-NQ). FAP required substrates with Pro at P(1) and Gly or d-amino acids at P(2) and preferred small, uncharged amino acids at P(3), but tolerated most amino acids at P(4), P(1)(') and P(2)('). These substrate preferences allowed design of peptidyl-chloromethyl ketones that inhibited FAP, but not the related protease, dipeptidyl peptidase-4. Thus, FAP is a narrow specificity endopeptidase and this can be exploited for inhibitor design.  相似文献   

9.
Proteases regulate numerous biological processes with a degree of specificity often dictated by the amino acid sequence of the substrate cleavage site. To map protease/substrate interactions, a 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized (X=all natural amino acids except cysteine) and microarrayed with fluorescent calibration standards in glycerol nanodroplets on glass slides. Specificities of 13 serine proteases (activated protein C, plasma kallikrein, factor VIIa, factor IXabeta, factor XIa and factor alpha XIIa, activated complement C1s, C1r, and D, tryptase, trypsin, subtilisin Carlsberg, and cathepsin G) and 11 papain-like cysteine proteases (cathepsin B, H, K, L, S, and V, rhodesain, papain, chymopapain, ficin, and stem bromelain) were obtained from 103,968 separate microarray fluorogenic reactions (722 substrates x 24 different proteases x 6 replicates). This is the first comprehensive study to report the substrate specificity of rhodesain, a papain-like cysteine protease expressed by Trypanasoma brucei rhodesiense, a parasitic protozoa responsible for causing sleeping sickness. Rhodesain displayed a strong P2 preference for Leu, Val, Phe, and Tyr in both the P1=Lys and Arg libraries. Solution-phase microarrays facilitate protease/substrate specificity profiling in a rapid manner with minimal peptide library or enzyme usage.  相似文献   

10.
Possibilities and limitations of method examination of proteolytic enzymes' primary specificity by statistical analysis of MALDI (matrix-assisted laser desorption/ionization) mass spectra of products obtained by protein substrates proteolysis without direct determination of their amino acid sequences were investigated theoretically. The optimum ranges given by the errors of the peptides masses measuring for the fabrication of statistical set of the events and the form of statistical data presentation were chosen. It was shown that the proposed method can be applied only for proteases with a relatively narrow primary specificity (two or three amino acids). The influence of protein substrate molecular weight and amino acid composition on the efficiency of specific to a particular protease amino acids display under statistical treatment of the set of proteolysis products masses was studied on the model of trypsin, chymotrypsin, glutamylendopeptidase, pepsin (pH 1.3).  相似文献   

11.
A protease can be defined as an enzyme capable of hydrolyzing peptide bonds. Thus, characterization of a protease involves identification of target peptide sequences, measurement of activities toward these sequences, and determination of kinetic parameters. Biological protease substrates based on fluorescent protein pairs, which allow for use of fluorescence resonance energy transfer (FRET), have been recently developed for in vivo protease activity detection and represent a very interesting alternative to chemical substrates for in vitro protease characterization. Here, we analyze a FRET system consisting of cyan and yellow fluorescent proteins (CFP and YFP, respectively), which are fused by a peptide linker serving as protease substrate. Conditions for CFP-YFP fusion protein production in Escherichia coli and purification of proteins were optimized. FRET between CFP and YFP was found to be optimum at a pH between 5.5 and 10.0, at low concentrations of salt and a temperature superior to 25 degrees C. For efficient FRET to occur, the peptide linker between CFP and YFP can measure up to 25 amino acids. The CFP-substrate-YFP system demonstrated a high degree of resistance to nonspecific proteolysis, making it suitable for enzyme kinetic analysis. As with chemical substrates, substrate specificity of CFP-substrate-YFP proteins was tested towards different proteases and kcat/Km values were calculated.  相似文献   

12.
Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available.  相似文献   

13.
Identification of peptide substrates for proteases can be a major undertaking. To overcome issues such as feasibility and deconvolution, associated with large peptide libraries, a 'small but smart' generic fluorescence resonance energy transfer rapid endopeptidase profiling library (REPLi) was synthesised as a tool for rapidly identifying protease substrates. Within a tripeptide core, flanked by Gly residues, similar amino acids were paired giving rise to a relatively small library of 3375 peptides divided into 512 distinct pools each containing only 8 peptides. The REPLi was validated with trypsin, pepsin, the matrix metalloprotease (MMP)-12 and MMP-13 and calpains-1 and -2. In the case of calpain-2, a single iteration step involving LC-MS, provided the definitive residue specificity from which a highly sensitive fluorogenic substrate, (FAM)-Gly-Gly-Gly-Gln-Leu-Tyr-Gly-Gly-DPA-Arg-Arg-Lys-(TAMRA), was then designed. The thorough validation of this 'small but smart' peptide library with representatives from each of the four mechanistic protease classes indicates that the REPLi will be useful for the rapid identification of substrates for multiple proteases.  相似文献   

14.
The substrate specificity of two isozymes of collagenolytic protease of the crab (Paralithodes camtschatica) was studied. It was found that both proteases can effectively hydrolyze type I and III collagens, as well as gelatin, the set of products yielded by enzymatic hydrolysis being different for isozymes A and C. Hydrolysis of some well-known peptides revealed that isozyme A predominantly cleaves the peptide bonds containing arginine and lysine residues, whereas isozyme C predominantly hydrolyzes bonds containing hydrophobic amino acids. The catalytic constants for the hydrolysis of several low molecular weight substrates in the presence of P. camtschatica proteases were determined, which allowed to attribute isozyme A to trypsin-like, and isozyme C to chymotrypsin-like proteinases. The peptide substrates of collagenase, Pz-Pro-Leu-Gly-Pro-D-Arg and Z-Gly-Pro-Ala-Gly-Pro-Ala are not hydrolyzed isozymes of crab collagenolytic protease.  相似文献   

15.
Proteolysis constitutes a major post-translational modification but specificity and substrate selectivity of numerous proteases have remained elusive. In this review, we highlight how advanced techniques in the areas of proteomics and activity-based probes can be used to investigate i) protease active site specificity; ii) protease in vivo substrates; iii) protease contribution to proteome homeostasis and composition; and iv) detection and localization of active proteases. Peptide libraries together with genetical or biochemical selection have traditionally been used for active site profiling of proteases. These are now complemented by proteome-derived peptide libraries that simultaneously determine prime and non-prime specificity and characterize subsite cooperativity. Cell-contextual discovery of protease substrates is rendered possible by techniques that isolate and quantitate protein termini. Here, a novel approach termed Terminal Amine Isotopic Labeling of Substrates (TAILS) provides an integrated platform for substrate discovery and appropriate statistical evaluation of terminal peptide identification and quantification. Proteolytically generated carboxy-termini can now also be analyzed on a proteome-wide level. Proteolytic regulation of proteome composition is monitored by quantitative proteomic approaches employing stable isotope coding or label free quantification. Activity-based probes specifically recognize active proteases. In proteomic screens, they can be used to detect and quantitate proteolytic activity while their application in cellular histology allows to locate proteolytic activity in situ. Activity-based probes – especially in conjunction with positron emission tomography – are also promising tools to monitor proteolytic activities on an organism-wide basis with a focus on in vivo tumor imaging. Together, this array of methodological possibilities enables unveiling physiological protease substrate repertoires and defining protease function in the cellular- and organism-wide context.  相似文献   

16.
Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively (M. Pacaud, J. Bacteriol. 149:6-14, 1982). The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. We termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [3H]diisopropylfluorophosphate as an active-site labeling reagent, we determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, and endogenous, periplasmic inhibitor of trypsin.  相似文献   

17.
Coenzyme A ligases play an important role in metabolism by catalyzing the activation of carboxylic acids. In this study we describe the synthesis of aminoacyl-coenzyme As (CoAs) catalyzed by a CoA ligase from Penicillium chrysogenum. The enzyme accepted medium-chain length fatty acids as the best substrates, but the proteinogenic amino acids L-phenylalanine and L-tyrosine, as well as the non-proteinogenic amino acids D-phenylalanine, D-tyrosine and (R)- and (S)-β-phenylalanine were also accepted. Of these amino acids, the highest activity was found for (R)-β-phenylalanine, forming (R)-β-phenylalanyl-CoA. Homology modeling suggested that alanine 312 is part of the active site cavity, and mutagenesis (A312G) yielded a variant that has an enhanced catalytic efficiency with β-phenylalanines and D-α-phenylalanine.  相似文献   

18.
Determination of the substrate specificity of site-specific proteases helps define their physiological roles. We developed a yeast-based system for defining the minimal substrate specificity of site-specific proteases, within the context of a protein. Using this system, we characterized the P4-P1 substrate specificity of the nematode apoptotic caspase CED-3. Apart from an absolute requirement for aspartate at the P1 position, CED-3 is a relatively promiscuous caspase capable of cleaving substrates bearing many amino acids at P4-P2 sites.  相似文献   

19.
Post-translational modifications enable extra layers of control of the proteome, and perhaps the most important is proteolysis, a major irreversible modification affecting every protein. The intersection of the protease web with a proteome sculpts that proteome, dynamically modifying its state and function. Protease expression is distorted in cancer, so perturbing signaling pathways and the secretome of the tumor and reactive stromal cells. Indeed many cancer biomarkers are stable proteolytic fragments. It is crucial to determine which proteases contribute to the pathology versus their roles in homeostasis and in mitigating cancer. Thus the full substrate repertoire of a protease, termed the substrate degradome, must be deciphered to define protease function and to identify drug targets. Degradomics has been used to identify many substrates of matrix metalloproteinases that are important proteases in cancer. Here we review recent degradomics technologies that allow for the broadly applicable identification and quantification of proteases (the protease degradome) and their activity state, substrates, and interactors. Quantitative proteomics using stable isotope labeling, such as ICAT, isobaric tags for relative and absolute quantification (iTRAQ), and stable isotope labeling by amino acids in cell culture (SILAC), can reveal protease substrates by taking advantage of the natural compartmentalization of membrane proteins that are shed into the extracellular space. Identifying the actual cleavage sites in a complex proteome relies on positional proteomics and utilizes selection strategies to enrich for protease-generated neo-N termini of proteins. In so doing, important functional information is generated. Finally protease substrates and interactors can be identified by interactomics based on affinity purification of protease complexes using exosite scanning and inactive catalytic domain capture strategies followed by mass spectrometry analysis. At the global level, the N terminome analysis of whole communities of proteases in tissues and organs in vivo provides a full scale understanding of the protease web and the web-sculpted proteome, so defining metadegradomics.  相似文献   

20.
Regulated proteolysis by the two-component NS2B/NS3 protease of dengue virus is essential for virus replication and the maturation of infectious virions. The functional similarity between the NS2B/NS3 proteases from the four genetically and antigenically distinct serotypes was addressed by characterizing the differences in their substrate specificity using tetrapeptide and octapeptide libraries in a positional scanning format, each containing 130,321 substrates. The proteases from different serotypes were shown to be functionally homologous based on the similarity of their substrate cleavage preferences. A strong preference for basic amino acid residues (Arg/Lys) at the P1 positions was observed, whereas the preferences for the P2-4 sites were in the order of Arg > Thr > Gln/Asn/Lys for P2, Lys > Arg > Asn for P3, and Nle > Leu > Lys > Xaa for P4. The prime site substrate specificity was for small and polar amino acids in P1' and P3'. In contrast, the P2' and P4' substrate positions showed minimal activity. The influence of the P2 and P3 amino acids on ground state binding and the P4 position for transition state stabilization was identified through single substrate kinetics with optimal and suboptimal substrate sequences. The specificities observed for dengue NS2B/NS3 have features in common with the physiological cleavage sites in the dengue polyprotein; however, all sites reveal previously unrecognized suboptimal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号