首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study mixed cultures that could grew in the molasses media were isolated from textile dye effluent and its decolorization activity was studied in a batch system under anaerobic conditions, in order to determine the optimal conditions required for the highest decolorization activity. The optimum pH value for decolorization was determined as 8 for all the dyes tested. In the experiment with pH 8 dye decolorizations by mixed cultures were investigated at about 96.2–1031.3 mg l−1 initial dye concentrations. The highest dye removal rates of mixed cultures were 94.9% for Reactive Red RB, 91.0% for Reactive Black B and 63.6% for Remazol Blue at 953.2, 864.9 and 1031.3 mg l−1 initial dye concentrations respectively within 24 h incubation period. When the Reactive Red RB was used, approximately 82–98% total color removal was obtained at between 96.2 and 953.2 mg l−1 initial dye concentrations after 12 h of incubation at 35 °C. These results show that our enriched mixed cultures have the potential to serve as an excellent biomass for the use in reactive dye removal from wastewaters under anaerobic conditions.  相似文献   

2.
Removal of basic and reactive dyes using ethylenediamine modified rice hull   总被引:6,自引:0,他引:6  
Ong ST  Lee CK  Zainal Z 《Bioresource technology》2007,98(15):2792-2799
Wastewaters from textile industries may contain a variety of dyes that have to be removed before their discharge into waterways. Rice hull, an agricultural by-product, was modified using ethylenediamine to introduce active sites on its surface to enable it to function as a sorbent for both basic and reactive dyes. The sorption characteristics of Basic Blue 3 (BB3) and Reactive Orange 16 (RO16) by ethylenediamine modified rice hull (MRH) were studied under various experimental conditions. Sorption was pH and concentration dependent. Simultaneous removal of BB3 and RO16 occurred at pH greater than 4. The kinetics of dye sorption fitted a pseudo-second order rate expression. Increase in agitation rate had no effect on the sorption of BB3 but increased uptake of RO16 on MRH. Decreasing particle size increased the uptake of dyes in binary dye solutions. Equilibrium data could be fitted into both the Langmuir and Freundlich isotherms. Maximum sorption capacities calculated from the Langmuir model are 14.68 and 60.24 mg/g for BB3 and RO16, respectively in binary dye solutions. This corresponds to an enhancement of 4.5 and 2.4 fold, respectively, compared to single dye solutions. MRH therefore has the potential of being used as an efficient sorbent for the removal of both dyes in textile wastewaters.  相似文献   

3.
Yang YY  Li ZL  Wang G  Zhao XP  Crowley DE  Zhao YH 《PloS one》2012,7(3):e33551
The performances of nine biosorbents derived from dead fungal biomass were investigated for their ability to remove Reactive Black 5 from aqueous solution. The biosorption data for removal of Reactive Black 5 were readily modeled using the Langmuir adsorption isotherm. Kinetic analysis based on both pseudo-second-order and Weber-Morris models indicated intraparticle diffusion was the rate limiting step for biosorption of Reactive Black 5 on to the biosorbents. Sorption capacities of the biosorbents were not correlated with the initial biosorption rates. Sensitivity analysis of the factors affecting biosorption examined by an artificial neural network model showed that pH was the most important parameter, explaining 22%, followed by nitrogen content of biosorbents (16%), initial dye concentration (15%) and carbon content of biosorbents (10%). The biosorption capacities were not proportional to surface areas of the sorbents, but were instead influenced by their chemical element composition. The main functional groups contributing to dye sorption were amine, carboxylic, and alcohol moieties. The data further suggest that differences in carbon and nitrogen contents of biosorbents may be used as a selection index for identifying effective biosorbents from dead fungal biomass.  相似文献   

4.
This research work was carried out to compare the color stripping efficiency of optimized biological method with the chemical stripping, commonly employed in the textile industries. Knitted fabric dyed with Reactive black B dye in 2, 4 and 6% shades strengths was subjected to chemical and biological stripping processes individually. Biological stripping process was found many fold superior to chemical one. It was noted that shade strength does not showed any pronounced effect on the bursting strength of fabric but biological and chemical treatment affect the quality of fabrics in terms of bursting strength/durability of fabric. White rot fungus Ganoderma lucidum IBL-05 showed good potential for decolorization/color stripping of cotton fabric dyed with Reactive black B under optimized set of conditions. The chemical stripping technology is inferior to biological stripping process regarding the quality of fabric and percent color removal from cotton fabric dyed with Reactive black B dye.  相似文献   

5.
Soil samples collected from dye contaminated sites of Vatva, Gujarat, India were studied for the screening and isolation of organisms capable of decolourizing textile dyes. The most efficient isolate, which showed decolourization zone of 48 mm on 300 ppm Reactive Red BS (C.I.111) containing plate, was identified as Pseudomonas aeruginosa. Reactive Red BS (C.I.111) was used as a model dye for the study. The isolated culture exhibited 91% decolourization of 300 ppm dye within 5.5 h over a wide pH range from 5.0 to 10.5 and temperature ranging from 30 to 40°C. The culture was able to decolourize more than 91% of Reactive Red BS under static conditions in presence of either glucose, peptone or yeast extract. Addition of 300 ppm of Reactive Red BS, in each step, in ongoing dye decolourization flask, gave more than 90% decolourization within 2 h corresponding to 136 mg l−1 h−1 dye removal rate. The isolate had the ability to decolourize six different reactive dyes tested as well as the actual dye manufacturing industry’s effluent. The degradation of the dye was confirmed by HPTLC.  相似文献   

6.
Li Q  Yue Q  Su Y  Gao B 《Bioresource technology》2011,102(9):5290-5296
The adsorption of a reactive dye (Reactive Yellow K-4G) and a disperse dye (Disperse yellow brown S-2RFL) onto polyepicholorohydrin-dimethylamine (EPIDMA) cationic polymer modified bentonite (EPIDMA-bentonite) in batch adsorber was studied, respectively. Two equilibrium models, the Langmuir and Freundlich models were selected to follow the adsorption process. It was shown that the equilibrium experimental data for reactive dye adsorption could be well described by the Freundlich model, but for disperse dye the Langmuir model could be better. Based on the well correlated adsorption isotherm, an adsorption process design model was developed for the design of a two-stage batch adsorber to predict the minimum amount of adsorbent to achieve a specified percentage of dye removal at a given volume of wastewater effluents. The adsorption process design analysis indicated that compared with the single-stage batch adsorption, the two-stage process could significantly save adsorbent to meet the higher demands of dye removal efficiency.  相似文献   

7.
Laccase (31.5 U of activity/g or 4.39 μg of protein/m2) from Trametes versicolor was immobilized on controlled-porosity-carrier silica beads and evaluated for the decolouration of Reactive blue 19, an anthraquinone dye. Although there was an initial, rapid adsorption of the dye to the packed bed in a recirculating reactor, about 97.5% of Reactive blue 19 removal was due to enzymatic degradation. The free enzyme lost 52% of its activity in 48 h. However, the activity of the immobilized laccase was unchanged after 4 months of storage in phosphate buffer under ambient conditions followed by three successive decolourations over 120 h. Treating the laccase immobilized beads with ethanolamine reduced dye adsorption by 40%.  相似文献   

8.
A new species of genus Shewanella, Shewanella decolorationis S12, from activated sludge of a textile-printing wastewater treatment plant, can decolorize Reactive Brilliant Blue K-GR, one kind of anthraquinone dye, with flocculation first. Although S. decolorationis displayed good growth in an aerobic condition, color removal was the best in an anaerobic condition. For color removal, the most suitable pH values and temperatures were pH 6.0–8.0 and 30–37°C under anaerobic culture. More than 99% of Reactive Brilliant Blue K-GR was removed in color within 15 h at a dye concentration of 50 mg/l. Lactate was the suitable carbon source for the dye decolorization. A metal compound, HgCl2, had the inhibitory effect on decolorization of Reactive Brilliant Blue K-GR, but a nearly complete decolorization also could be observed at a HgCl2 concentration of 10 mg/l. The enzyme activities, which mediate the tested dye decolorization, were not significantly affected by preadaptation of the bacterium to the dye.  相似文献   

9.
Adsorption techniques are widely used to remove industrial wastewater contaminants, especially non-biodegradable colourants. In this study, Iranian zeolite clinoptilolite was synthesised using magnetic iron oxide as an inexpensive and efficient adsorbent. The results showed that using natural zeolite, the removal efficiency of 26.8.6% at pH?=?3 reached 48% at pH?=?9. However, the adsorption capacity of the modified clinoptilolite did not change by increasing pH; it ranged from 96.4% to 98.6%. Moreover, increase in the initial concentration of the dye did not have any effects on the removal efficacy of the modified clinoptilolite. Using natural zeolite, on the other hand, the adsorption capacity showed a significant decrease and reached less than 10% at the 200?mg/l dye concentration. At the optimal contact time of 45?min, the dye removal rate by the modified zeolite was more than 98% at the optimal dose of 0.5?g. Indeed, the adsorption isotherm complied with Freundlich equation. Overall, the results showed that in comparison to the natural zeolite, the adsorption capacity of the clinoptilolite modified by iron nanoparticles increased significantly due to the uniformity of the cavities and increase in the surface of the adsorbent.  相似文献   

10.
The effect of Acid Orange 7, Acid Red 18 and Reactive Black 5 on the growth and decolorization properties of Schizophyllum commune was studied with respect to the initial pH varying from 1 to 6 and initial dye concentration (10-100 mg/L). The optimum pH value was found to be 2 for both growth and color removal of these azo dyes. Increasing the concentration of azo dyes inhibited the growth of S. commune. It was observed that S. commune was capable of removing Acid Orange 7, Acid Red 18 and Reactive Black 5 with a maximum specific uptake capacity of 44.23, 127.53 and 180.17 (mg/g) respectively for an initial concentration of 100 mg/L of the dye. Higher decolorization was observed at lower concentrations for all the dyes. Finally it was found that the percentage decolorization was more in the case of Reactive Black 5 dye compared to the other two dyes used in the present investigation.  相似文献   

11.
Ganoderma lucidum U-281漆酶催化偶氮染料活性黑5脱色   总被引:1,自引:0,他引:1  
漆酶在纺织染料脱色及印染废水处理领域有着广阔的应用前景。活性黑5是纺织印染中应用广泛的偶氮类活性染料,结构复杂,生物降解性低。以灵芝菌Ganoderma lucidum U-281所产漆酶对活性黑5进行氧化脱色,采用单因素逐一优化方法得到了U-281漆酶催化活性黑5脱色的工艺参数:染料初始浓度25mg/L、漆酶用量2.0U/mL、铜离子添加量40mmol/L、pH 6.0、40℃。在优化条件下,4h可使RB5脱色62.34%,24h可完成90%以上的脱色效果。  相似文献   

12.
Degradation of a mixture of three reactive textile dyes (Reactive Black 5, Reactive Yellow 15 and Reactive Red 239), simulating a real textile effluent, by commercial laccase, was investigated in a batch reactor. The discoloration was appraised as a percentage of the absorbance reduction at the wavelength of maximum absorbance for each dye and as total color removal based in all visible spectrum. A significantly high discoloration was achieved in both cases, indicating the applicability of this method for textile wastewater treatment. Mathematical models were developed to simulate the kinetics of laccase catalyzed degradation of reactive dyes in mixtures. Like in single dye degradation, some of the reactions present an unusual kinetic behavior, corresponding to the activation of the laccase-mediator system. The kinetic constants of the models were estimated by minimizing the difference between the predicted and the experimental time courses. Although not perfect, the ability of the models in representing the experimental results suggests that they could be used in design and simulation applications.  相似文献   

13.
The current study reports a facile method to fabricate functionalized multi-walled carbon nanotubes and montmorillonite clay mineral-based nanocomposite matrix and its detailed characterization using spectroscopic and morphological techniques. The nanocomposites have been studied for their potential applications in the treatment of contaminated water using batch adsorption studies. The investigations conducted using optical absorption spectroscopic measurements for the adsorption process indicate that the nanocomposite matrix can effectively remove almost 98% of the dye from aqueous solution. The nanocomposites have showed fast and strong adsorption behaviour for the dye with the maximum adsorption capacity (qm) of ~467.3 mg g−1 in 25 min. The experimental data at equilibrium were also correlated with the theoretical adsorption isotherm and kinetic models. The results demonstrate that the experimental data fits well to the Freundlich adsorption isotherm model and conforms to second-order kinetics. Furthermore, the nanocomposite exhibits good recyclability without any marked decrease in the adsorption performance even after five adsorption cycles of usage which indicates its potential application as reusable adsorbent for the efficient removal of hazardous dyes from contaminated water.  相似文献   

14.
The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.  相似文献   

15.
The nonspecific ability of anaerobic sludge bacteria obtained from cattle dung slurry was investigated for 17 different dyes in a batch assay system using sealed serum vials. Experiments using Reactive Violet 5 (RV 5) showed that sludge bacteria could effectively decolorize solutions having dye concentrations up to 1000 mg l−1 with a decolorization efficiency of above 75% during 48 h of incubation. Headspace gas composition of anaerobic batch systems for varying dye concentration revealed that lower concentrations of RV 5 (upto 500 mg l−1) were found to be stimulatory to the methanogenic activity of sludge bacteria. However at higher dye concentrations, the headspace gas composition was found to be similar to batch assay controls without dye, indicating that dye at higher concentrations was inhibitory to methanogenic bacteria of sludge. The optimum inoculum and incubation temperature for maximum decolorization of RV 5 was found to be 9.0 g l−1(in terms of total solids) and 37°C, respectively. Of sixteen other dyes tested, nine (Reactive Black 5, Reactive Blue 31, Reactive Blue 28, Reactive Red HE8B, Reactive Yellow, Reactive Golden Yellow, Mordant Orange, Novatic Olive R S/D & Navilan Yellow GL) were decolorized with more than 88% efficiency; three (Orange II, Navy Blue HER & Novatic Blue BC S/D) were decolorized with about 50–65% efficiency, whereas other three dyes (Procion Orange H2R, Procion Brilliant Blue HGR & Novatic Blue BC S/D) were decolorized with less than 40% efficiency. Though Ranocid Fast Blue was decolorized with about 92.5% efficiency, this was merely due to sorption, whereas the other dyes were decolorized due to biotransformation.  相似文献   

16.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

17.
Successful decolorization of azo dyes (Orange II, Amido Black 10, Reactive Black 5, and Reactive Red 120) and industrial textile dye influents and effluents with sulfate-reducing bacteria from within a biosulfidogenic reactor was achieved with decolorizations ranging from 96% to 49% over 144 h. Concomitant with the decrease in absorbance of the dye in the visible region (480-620 nm) was an increase in the absorbance at 280 nm, over 48 h, suggesting an increase in concentration of single aromatic amines. With an extended period of time there was a subsequent decrease in the absorbance at 280 nm indicating that the aromatic amines had been degraded. The anthraquinone dye, Reactive Blue 2, remained unchanged after 144 h of incubation in the biosulfidogenic reactor and was only rapidly decolored at 192 h, implying that certain factors are induced in the reactor to break down this non-azo dye. The fastest decolorization/degradation rates and highest hydrogenase enzyme production were observed with Orange II, while the slowest decolorization/degradation rate and least enzyme production were with Reactive Blue 2, suggesting that these processes are controlled, to a certain degree, by an enzymatic mechanism. With sulfate-reducing bacteria that had been cultured on a lactate medium, there was complete decolorization of both authentic dyes and industrial influents and effluents as monitored by the decrease of absorbance in the visible region (480-620 nm). There was, however, very little breakdown of the single aromatic compounds as the absorbance at 280 nm remained fairly significant. This supports the suggestion that, within the biosulfidogenic reactor, there are factors other than the identified hydrogenases that are responsible for degradation of the aromatic compounds.  相似文献   

18.
In this paper, the preparation, characterization and dye adsorption properties of nanocomposite (calcium alginate/organophilic montmorillonite) (CA/OMMT) were investigated. A new nanocomposite consisting of alginate and OMMT was prepared by polymerization using γ-rays irradiation as initiator. Physical characteristics of CA/OMMT were studied using X-ray diffraction (XRD), infrared spectrophotometery (IR), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). Two textile dyes, acid green B and direct pink 3B, were used as model anionic dye. Factors affecting dye sorption, such as pH, sorbent concentration and temperature of each dye solution were extensively investigated. It was found from the study that the sorption of dyes by the nanocomposite is pH-dependent and maximum sorption was obtained at pH 2. The thermodynamic data showed that dye adsorption onto alginate was spontaneous, exothermic, and a physisorption reaction. On the basis of the data of the present investigation, one could conclude that the as-prepared adsorbents exhibited excellent affinity for the dye, and can be applied to treat wastewater containing anionic dyes.  相似文献   

19.
The nutritional conditions supporting growth and maximum dye removal by Aspergillus lentulus have been investigated. Initially a composite media containing yeast extract, glucose and mineral components was used and the effect of various components on dye removal was studied. For maximum dye removal (≈100%), ≥0.5% (w/v) glucose and ≥0.25% (w/v) yeast extract were essential. While glucose played an important role in pellet formation, which in turn was important for dye removal, yeast extract contributed towards higher biomass production. Mineral components (except NH4NO3) did not affect dye removal significantly. Next the alternate sources of carbon (molasses, jaggery, starch and sodium acetate) and nitrogen (peptone, urea, ammonium nitrate, sodium nitrate and ammonium chloride) were tested. Among carbon sources, all the sources produced almost complete dye removal in 48 h (more than 97% in 24 h), except sodium acetate (64% in 48 h). All the tested nitrogen sources resulted in >90% dye removal in 48 h. Yeast extract and peptone gave best results with high dye removal rate (9.8 and 8.1 mg/l/h, respectively). However, among the low cost alternates, urea and NH4Cl came out to be suitable sources due to the high uptake capacity of the biomass produced coupled with high dye removal rate in case of NH4Cl. Therefore, a combination of urea and NH4Cl was tested, which produced complete dye removal with a high dye removal rate (10 mg/l/h). Finally the modified composite media containing urea and NH4Cl as nitrogen sources and glucose as carbon source was utilized for effluent treatment. Results indicated that performance of modified composite media was at par with composite media for supporting growth of A. lentulus and dye removal from the textile effluent.  相似文献   

20.
Summary The extracellular ligninolytic enzymes of white-rot fungi are thought to catalyse the initial steps during the degradation of highly complex compounds like lignin or polycyclic aromatic hydrocarbons. We studied the ability of Pleurotus florida isolated from the foothills of the Western Ghats, India to decolourize the three dyestuffs, Reactive Green, Yellow and Blue, which are widely used in the textile industry around Coimbatore, Tamil Nadu, India. The crude culture filtrate of Pleurotus florida when incubated with different concentrations of dye decolourized it efficiently on the third day. The highest colour removal was found in the case of Reactive Blue. However, when Agaricus bisporus extract was supplemented with Pleurotus florida filtrate, the efficiency increased. The dye decolourization was advanced to the second day and the efficiency of dye decolourization of Reactive Yellow was 89% followed by Reactive Green, which was 45% when a dye concentration of 0.5% was used. Pleurotus florida filtrate alone and in combination with Agaricus bisporus extract reduced the aromatic compounds in textile and paper industry effluents on the first day with >90% efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号