首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanocrystalline cellulose (NCC) reinforced chitosan-based biodegradable films were prepared by solution casting. The NCC content in the films was varied from 1 to 10% (dry wt. basis). It was found that the tensile strength (TS) of the nanocomposite films with 5% (w/w) NCC content was optimum with an improvement of 26% compared to the control chitosan films. Incorporation of NCC also significantly improved barrier properties. Water vapor permeability (WVP) of the chitosan/NCC films was decreased by 27% for the optimum 5% (w/w) NCC content. Swelling studies revealed a decrease in water uptake of the NCC-reinforced chitosan films. Analyses of thermal properties showed no significant effect of NCC whereas X-ray diffraction studies confirmed the appearance of crystalline peaks in the nanocomposite films. Surface morphology of the films was investigated by scanning electron microscopy and it was found that NCC was dispersed homogenously into chitosan matrix.  相似文献   

2.
A highly flexible nanocomposite film of bacterial cellulose (BC) and graphene oxide (GO) with a layered structure was presented using the vacuum-assisted self-assembly technique. Microscopic and X-ray diffraction measurements demonstrated that the GO nanosheets were uniformly dispersed in the BC matrix. The interactions between BC and GO were studied by Fourier transformation infrared spectroscopy. Compared with pristine BC, the integration of 5 wt% GO resulted in 10% and 20% increase in Young's modulus and tensile strength of the composite film. The electrical conductivity of the composite film containing 1 wt% GO after in situ reduction showed a remarkable increase by 6 orders of magnitude compared with the insulated BC.  相似文献   

3.
Cao X  Dong H  Li CM 《Biomacromolecules》2007,8(3):899-904
New nanocomposite films were prepared from a suspension of cellulose nanocrystals as the filler and a polycaprolactone-based waterborne polyurethane (WPU) as the matrix. The cellulose nanocrystals, prepared by acid hydrolysis of flax fiber, consisted of slender rods with an average length of 327 +/- 108 nm and diameter of 21 +/- 7 nm, respectively. After the two aqueous suspensions were mixed homogeneously, the nanocomposite films were obtained by casting and evaporating. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of attenuated total reflection Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and tensile testing. The results indicated that the cellulose nanocrystals could disperse in the WPU uniformly and resulted in an improvement of microphase separation between the soft and hard segments of the WPU matrix. The films showed a significant increase in Young's modulus and tensile strength from 0.51 to 344 MPa and 4.27 to 14.86 MPa, respectively, with increasing filler content from 0 to 30 wt %. Of note is that the Young's modulus increased exponentially with the filler up to a content of 10 wt %. The synergistic interaction between fillers and between the filler and WPU matrix played an important role in reinforcing the nanocomposites. The superior properties of the new nanocomposite materials could have great potential applications.  相似文献   

4.
A high-strength elastomeric nanocomposite has successfully been prepared by dispersing microcrystalline cellulose in a polyurethane matrix. The resulting nanocomposites show increased strain-to-failure in addition to increased stiffness and strength compared to the unfilled polyurethane. The optimal composite contained 5 wt % cellulose. The average true strength for this composition was 257 MPa, compared with 39 MPa for the neat polyurethane, and showed the highest strain-to-failure. The improvements of stiffness, strength, as well as strain-to-failure are believed to be due to good interaction, by both covalent and hydrogen bonds, between the polyurethane and the cellulose nanofibrils.  相似文献   

5.
6.
New nanocomposite films were prepared with atactic polypropylene as the matrix and either of three types of cellulose whiskers, with various surface and dispersion characteristics, as the reinforcing phase: aggregated without surface modification, aggregated and grafted with maleated polypropylene or individualized and finely dispersed with a surfactant. Films obtained by solvent casting from toluene were investigated by means of scanning electron microscopy, dynamic mechanical analysis, and tensile testing. In the linear region, the mechanical properties above the glass-rubber transition were found to be drastically enhanced for the nanocomposites as compared to the neat polypropylene matrix. These effects were ascribed to the formation of a rigid network with filler/filler interactions. In addition, interactions between the filler and the matrix as well as the dispersion quality were found to play a major role on the mechanical properties of the composites when investigation of the films was performed in the nonlinear region.  相似文献   

7.
A method is described for construction of a novel amperometric triglyceride (TG) biosensor based on covalent co-immobilization of lipase, glycerol kinase (GK) and glycerol-3-phosphate oxidase (GPO) onto chitosan (CHIT) and zinc oxide nanoparticles (ZnONPs) composite film deposited on the surface of Pt electrode. The enzymes-ZnONPs-CHIT composite was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor showed optimum response within 6 s at pH 7.5 and temperature of 35 °C. The sensor measures current due to electrons generated at 0.4 V against Ag/AgCl from H2O2, which is produced from triolein by co-immobilized enzymes. A linear relationship was obtained between a wide triolein concentration range (50-650 mg/dl) and current (mA) under optimum conditions. The biosensor showed high sensitivity, low detection limit (20 mg/dl) and good storage stability (half-life of 7 months at 4 °C). The biosensor was unaffected modified by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of TG in sera in apparently healthy subjects and persons suffering from hypertriglyceridemia.  相似文献   

8.
Rheological properties of pullulan, sodium alginate and blend solutions were studied at 20 °C, using steady shear and dynamic oscillatory measurements. The intrinsic viscosity of pure sodium alginate solution was 7.340 dl/g, which was much higher than that of pure pullulan (0.436 dl/g). Pure pullulan solution showed Newtonian behavior between 0.1 and 100 s−1 shear rate range. However, increasing sodium alginate concentration in pullulan-alginate blend solution led to a shear-thinning behavior. The effect of temperature on viscosities of all solutions was well-described by Arrhenius equation. Results from dynamical frequency sweep showed that pure sodium alginate and blend solutions at 4% (w/w) polymer concentration were viscoelastic liquid, whereas the pure pullulan exhibited Newtonian behavior. The mechanical properties of pure sodium alginate and pullulan-alginate mixture were analyzed using the generalized Maxwell model and their relaxation spectra were determined. Correlation between dynamic and steady-shear viscosity was analyzed with the empirical Cox-Merz rule.  相似文献   

9.
Li J  Lin X 《Biosensors & bioelectronics》2007,22(12):2898-2905
Novel Pt nanoclusters embedded polypyrrole nanowires (PPy-Pt) composite was electrosynthesized on a glassy carbon electrode, denoted as PPy-Pt/GCE. A glucose biosensor was further fabricated based on immobilization of glucose oxidase (GOD) in an electropolymerized non-conducting poly(o-aminophenol) (POAP) film that was deposited on the PPy-Pt/GCE. The morphologies of the PPy nanowires and PPy-Pt nanocomposite were characterized by field emission scanning electron microscope (FE-SEM). Effect of experimental conditions involving the cycle numbers for POAP deposition and Pt nanoclusters deposition, applied potential used in glucose determination, temperature and pH value of the detection solution were investigated for optimization. The biosensor exhibited an excellent current response to glucose over a wide linear range from 1.5 × 10−6 to 1.3 × 10−2 M (r = 0.9982) with a detection limit of 4.5 × 10−7 M (s/n = 3). Based on the combination of permselectivity of the POAP and the PPy films, the sensor had good anti-interference ability to ascorbic acid (AA), uric acid (UA) and acetaminophen. The apparent Michaelis–Menten constant (Km) and the maximum current density (Im) were estimated to be 23.9 mM and 378 μA/cm2, respectively. In addition, the biosensor had also good sensitivity, stability and reproducibility.  相似文献   

10.
In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol–gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry. The synergistic effect of the high active surface area of both materials, i.e. PPI and ZrO2 nanoparticles, gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor and aided the immobilisation of the urease enzyme. The biosensor has an ampereometric response time of ∼4 s in urea concentration ranging from 0.01 mM to 2.99 mM with a correlation coefficient of 0.9985 and sensitivity of 3.89 μA mM−1 cm−2. The biosensor was selective in the presence of interferences. Photochemical study of the immobilised enzyme revealed high stability and reactivity.  相似文献   

11.
A new cellulose graft copolymer was synthesized in 1-N-butyl-3-methylimidazolium chloride ([Bmim]Cl) by the ring opening graft polymerization (ROGP) of p-dioxanone (PDO) onto cellulose. The structure of the copolymer was characterized by 13C and 1H NMR, WAXD, DSC as well as SEM. Cellulose graft copolymers with a molar substitution (MS) in the range of 2.08–4.60 were obtained with 24 h at 80 °C in a completely homogeneous procedure. The obtained copolymers exhibited the clear glass transition temperatures (Tg) indicating the inter-molecular and intra-molecular hydrogen bonds in cellulose molecules had been destroyed. The reaction media applied can be easily recycled and reused.  相似文献   

12.
Novel Pt nanoclusters embedded polypyrrole nanowires (PPy-Pt) composite was electrosynthesized on a glassy carbon electrode, denoted as PPy-Pt/GCE. A glucose biosensor was further fabricated based on immobilization of glucose oxidase (GOD) in an electropolymerized non-conducting poly(o-aminophenol) (POAP) film that was deposited on the PPy-Pt/GCE. The morphologies of the PPy nanowires and PPy-Pt nanocomposite were characterized by field emission scanning electron microscope (FE-SEM). Effect of experimental conditions involving the cycle numbers for POAP deposition and Pt nanoclusters deposition, applied potential used in glucose determination, temperature and pH value of the detection solution were investigated for optimization. The biosensor exhibited an excellent current response to glucose over a wide linear range from 1.5 × 10−6 to 1.3 × 10−2 M (r = 0.9982) with a detection limit of 4.5 × 10−7 M (s/n = 3). Based on the combination of permselectivity of the POAP and the PPy films, the sensor had good anti-interference ability to ascorbic acid (AA), uric acid (UA) and acetaminophen. The apparent Michaelis–Menten constant (Km) and the maximum current density (Im) were estimated to be 23.9 mM and 378 μA/cm2, respectively. In addition, the biosensor had also good sensitivity, stability and reproducibility.  相似文献   

13.
In this work, the moulded cellulose fibers/MPU-20 composites (CFMCs) with apparent specific gravity lower than 100 kg/m3 and thickness of 20–200 mm have been successfully manufactured using a new design of steam injection technology and equipment. It was found that the CFMCs have good cushioning properties, with a cushion factor lower than 4. Two yield deformation stages were observed in the compressive process. Compressive stress–strain and cushion factor-stain curves were measured as a function of steam injection pressure, transmission time, holding time, MPU-20 resin dosage and apparent specific gravity. Chemical groups, crystallinity, and thermal properties of samples were studied through the use of FTIR spectroscopy, X-ray diffraction (XRD), and DTA–TGA. In addition, the microstructure and morphology were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM).  相似文献   

14.
Nonspecific cytotoxic cells (NCC) obtained from channel catfish (Ictalurus punctatus) kill Tetrahymena pyriformis, an opportunistic parasite in fish. Based upon this fact, a new mechanism for nonspecific cellular anti-parasitic immunity in fish is proposed. Optimum in vitro conditions for NCC killing of deciliated T. pyriformis were first obtained. Lysis of T. pyriformis by NCC occurred by 10 hr of cocultivation of effector and target cells. During this time period, 50 to 60% cytotoxicity occurred. Fish anti-T. pyriformis serum enhanced NCC killing of T. pyriformis either by prolonging immobilization (after the cilia regeneration period) or by delaying cilia regeneration. Shared antigenic determinants between T. pyriformis, Ichthyophthirius multifiliis, and NC-37 target cells were demonstrated by binding-depletion experiments. For these studies, NCC were depleted from anterior kidney cells (the hemopoetic organ in fish) by preincubating formalin-treated T. pyriformis, I. multifiliis, or viable NC-37 target cells with NCC for 3 hr. Conjugates of effector and target cells were removed by overlaying on fetal bovine serum. Unconjugated fish anterior kidney cells were tested for cytotoxic activity against NC-37 or T. pyriformis target cells. Cold target inhibition experiments by using a 4-hr 51chromium cytotoxicity assay also demonstrated these shared antigenic determinants. Target-specific antisera, used to mediate the killing of T. pyriformis by NCC, were required only for immobilizing the targets, and did not function in an antibody-dependent cell-mediated (ADCC)-like mechanism. Scanning electron micrographs of NCC-T. pyriformis conjugates additionally demonstrated NCC binding to both cilia and cell surface determinants.  相似文献   

15.
Nanocomposite films of bacterial cellulose (10-50 wt%) and polyurethane-based resin were prepared and characterized for physical, mechanical and dielectric properties. It was observed that the bacterial cellulose swelled in ethanol, and that bacterial cellulose sheets prepared from fibre suspension in ethanol exhibited a relatively less dense structure in comparison to those processed from aqueous fibre suspension. Nanocomposites fabricated from ethanol suspension also showed inferior mechanical properties but superior dielectric properties. Higher amounts of free proton generated from ethanol can induce more dipole mechanism; therefore, there is higher mobility of proton localized along cellulose chain, indicating that higher dielectric constants can be obtained.  相似文献   

16.
N,N′-Bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide (5), a novel diol monomer containing chiral group, was prepared by the reaction of S-tyrosine methyl ester (3) with isophthaloyl dichloride (4a). A new family of optically active and potentially biodegradable poly(ester-amide)s (PEAs) based on tyrosine amino acid were prepared by the polycondensation reaction of diol monomer 5 with several aromatic diacid chlorides. The resulting new polymers were obtained in good yields with inherent viscosities ranging between 0.25 and 0.42 dL/g and are soluble in polar aprotic solvents. They showed good thermal stability and high optical purity. The synthetic compounds were characterized and studied by FT-IR, 1H-NMR, specific rotation, elemental and thermogravimetric analysis (TGA) techniques and typical ones by 13C-NMR, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) analysis. Soil burial test of the diphenolic monomer 5, and obtained PEA6a, and soil enzymatic assay showed that the synthesized diol and its polymer are biologically active and probably biodegradable in soil environment.  相似文献   

17.
Encapsulation of glucose oxidase (GOD) in polyelectrolyte complex capsules and its influence on properties of the enzyme is reported. The immobilization of GOD in the capsules made of sodium alginate (SA), cellulose sulfate (CS), poly(methylene-co-guanidine) (PMCG), CaCl2 and NaCl (GOD–SA–CS/PMCG capsules) was achieved using a one-step highly reproducible encapsulation protocol which was monitored by a Electrospray Ionization-Mass Spectrometry (ESI-MS). A leakage of the enzyme from the capsules was negligible. Encapsulated GOD exhibited higher thermostability, wider range of pH optimum and improved storage stability in comparison with free GOD. The 92% retained activity by the encapsulated GOD after 45 biooxidation cycles was markedly higher than that of the GOD entrapped in calcium pectate gel beads showing no activity after 12 cycles. Optimization of conditions of oxygen supplementation resulted in increased oxygen availability within the GOD–SA–CS/PMCG capsules. Oxygen supplementation was accompanied with a mild decrease in the mechanical resistance of the SA–CS/PMCG capsules.  相似文献   

18.
Li X  Su Y  Chen Q  Lin Y  Tong Y  Li Y 《Biomacromolecules》2005,6(6):3181-3188
A series of novel AB3-type monomers were prepared from nontoxic natural gallic acid and amino acids. These monomers were then melt-polycondensed in the presence of MgO as a catalyst via a transesterification process at 170-190 degrees C to yield the hyperbranched poly(ester-amide)s bearing terminal acetyl groups. FTIR and NMR spectra confirmed the structures of all the monomers and polymers. The degrees of branching, estimated from 1H NMR and quantitative 13C NMR spectra, were 0.50-0.68. These hyperbranched polymers displayed moderately high molecular weights. Hydrolytic and enzymatic degradation studies were carried out in vitro at 37.5 degrees C in NaOH hydrotropic solution and in Tris-HCl buffer (pH = 8.6) containing proteinase K, respectively. The results indicate that the hyperbranched poly(ester-amide)s are degradable hydrolytically as well as enzymatically, and the rate of hydrolytic degradation increases with the pH value of the solution.  相似文献   

19.
Amsden B  Wang S  Wyss U 《Biomacromolecules》2004,5(4):1399-1404
Biodegradable elastomers represent a useful class of biomaterials. In this paper, we synthesize thermoset elastomers by utilizing the living nature of ring-opening polymerization of a star copolymer of D,L-lactide and epsilon-caprolactone initiated with glycerol and catalyzed by stannous 2-ethylhexanoate. The star copolymers were synthesized of varying molecular weight and monomer composition and cross-linked by compression molding using a dilactone, bis(epsilon-caprolactone-4-yl)propane dissolved in epsilon-caprolactone monomer. The elastomers were then characterized by differential scanning calorimetry and uniaxial tensile testing and their physical properties related to the nature of the star copolymer prepolymers. The results demonstrate a means of predictably altering the elastomer physical properties by adjusting the star copolymer prepolymer initial molecular weight and monomer ratio.  相似文献   

20.
There has been little study on the effect of composition or molecular weight on the biodegradation rate of photo-cross-linked biodegradable aliphatic polyesters though such information is important for tissue engineering scaffolds. We have synthesized a new series of photopolymerizable linear poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylates with different molecular weights (Mn = 1800, 4800, and 9300 Da) and compositions (20%, 40%, and 60% epsilon-CL) and studied their biodegradation rates. The resultant oligomers were amorphous and appeared as viscous liquids at room temperature. Liquid-to-solid polymerization was carried out by UV irradiation in the presence of a photoinitiator. The photocuring yield was high (greater than 95%), and the photo-cross-linked polymers were amorphous and rubbery. Mechanical measurements showed that the polymers can be stretchable or rigid; the high molecular weight/low epsilon-CL network has a strain of 176% and a modulus of 1.66 MPa while the low molecular weight/high epsilon-CL network has a strain of 21% and a modulus of 12.3 MPa. In a 10 week in vitro biodegradation study, the polymers exhibited a two-stage degradation behavior. In the first stage, the polymer weight and strain remained almost constant, but a linear decrease in the Young's modulus (E) and ultimate stress (sigma) were observed. Lower oligomer molecular weight or epsilon-CL content correlated with a faster decrease in Young's modulus. In the second stage, which began when the Young's modulus dropped below 1 MPa, there was rapid weight loss and strain increase. The lower the epsilon-CL content, the earlier the second stage happened. Low molecular weight and high epsilon-CL content correlated with a longer modulus half-life (time for the modulus to degrade to 50% of its initial value). The degradation results suggest principles that may be helpful in predicting the biodegradation behavior of similar polymeric cross-linked networks. Films formed from these new polymers have excellent biocompatibility with smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号