首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4–5), the kinin release yield was only 2–3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg9-bradykinin, the agonist of inflammation-inducible B1 receptors.  相似文献   

2.
Bradykinin-related peptides, kinins, ubiquitously occur in the nervous system and together with other pro-inflammatory mediators contribute to pathological states of that tissue such as edema and chronic pain. In the current work we characterized the kinin-forming system of neuronal cells obtained by differentiation of human neuroblastoma cell line IMR-32 with retinoic acid. These cells were shown to concentrate exogenous kinin precursors, kininogens, on the surface, release kinins from kininogens and subsequently convert kinins to their des-Arg metabolites. Significantly higher amounts of kinins and des-Arg-kinins were produced after cell stimulation with interferon-γ, a potent pro-inflammatory mediator involved in many neurological disorders. The expression of the major tissue kininogenase (the human kallikrein 1) and the major cell membrane-bound kininase (the carboxypeptidase M) also increased after cell stimulation with interferon-γ, suggesting the involvement of these enzymes in the kinin production and degradation, respectively. Interferon-γ was also able to up-regulate the expression of two known subtypes of kinin receptors. On the protein level, the changes were only observed in the expression of the des-Arg-kinin-specific type 1 receptor which functions in the propagation of the inflammatory state. Taken together, these results suggest a novel way for local kinin and des-Arg-kinin generation in the nervous tissue during pathological states accompanied by interferon-γ release.  相似文献   

3.
Kinins are released from kininogens through the activation of the Hageman factor-prekallikrein system or by tissue kallikrein. These peptides exert various biological activities, such as vascular permeability increase, smooth muscle contraction, pain sensation and induction of hypotension. In many instances kinins are thought to be involved in the pathophysiology of various diseases. Recent studies have revealed that microbial and human cell proteinases activate Hageman factor and/or prekallikrein, or directly release kinin from kininogens. This review discusses the activation of the kinin-release system by mast-cell tryptase and microbial proteinases, including gingipains, which are cysteine proteinases from Porphyromonas gingivalis , the major pathogen of periodontal disease. Each enzyme is evaluated in the context of its association to allergy and infectious diseases, respectively. Furthermore, a novel system of kinin generation directly from kininogens by the concerted action of two proteinases is described. An interesting example of this system with implications to bacterial pathogenicity is the release of kinins from kininogens by neutrophil elastase and a synergistic action of cysteine proteinases from Staphylococcus aureus . This alternative production of kinins by proteinases present in diseased sites indicates a significant contribution of proteinases other than kallikreins in kinin generation. Therefore kinin receptor antagonists and proteinase inhibitors may be useful as therapeutic agents.  相似文献   

4.
We have previously reported that exogenous bradykinin activates immature dendritic cells (DCs) via the bradykinin B(2) receptor (B(2)R), thereby stimulating adaptive immunity. In this study, we show that these premises are met in a model of s.c. infection by Trypanosoma cruzi, a protozoan that liberates kinins from kininogens through its major protease, cruzipain. Intensity of B(2)R-dependent paw edema evoked by trypomastigotes correlated with levels of IL-12 produced by CD11c(+) dendritic cells isolated from draining lymph nodes. The IL-12 response induced by endogenously released kinins was vigorously increased in infected mice pretreated with inhibitors of angiotensin converting enzyme (ACE), a kinin-degrading metallopeptidase. Furthermore, these innate stimulatory effects were linked to B(2)R-dependent up-regulation of IFN-gamma production by Ag-specific T cells. Strikingly, the trypomastigotes failed to up-regulate type 1 immunity in TLR2(-/-) mice, irrespective of ACE inhibitor treatment. Analysis of the dynamics of inflammation revealed that TLR2 triggering by glycosylphosphatidylinositol-anchored mucins induces plasma extravasation, thereby favoring peripheral accumulation of kininogens in sites of infection. Further downstream, the parasites generate high levels of innate kinin signals in peripheral tissues through the activity of cruzipain. The demonstration that the deficient type 1 immune responses of TLR2(-/-) mice are rescued upon s.c. injection of exogenous kininogens, along with trypomastigotes, supports the notion that generation of kinin "danger" signals is intensified through cooperative activation of TLR2 and B(2)R. In summary, we have described a s.c. infection model where type 1 immunity is vigorously up-regulated by bradykinin, an innate signal whose levels in peripheral tissues are controlled by an intricate interplay of TLR2, B(2)R, and ACE.  相似文献   

5.
Bradykinin-related vasoactive peptides (kinins) are important mediators of local and systemic inflammatory reactions. However, at local inflammatory foci, the production of kinins from proteinaceous precursors (kininogens) can be affected by reactive oxygen species released by phagocyte cells. One of the predominant oxidants at these places is hypochlorous acid which is formed from hydrogen peroxide and chloride ions by neutrophil myeloperoxidase. In this study, inactivation of human kininogens after oxidation with the myeloperoxidase-H?O?-chloride system was observed and analyzed by protein chemistry methods. The kinin release from oxidized kininogens by major kinin-producing enzymes, plasma and tissue kallikreins, proceed with a very low rate. This effect was assigned to apparent inability of kallikreins to process the kinin N-terminus owing to the conversion of the adjacent Met-361 residue to methionine sulfoxide. Additionally, the oxidized high-molecular mass kininogen lost its natural ability to bind plasma prekallikrein. This effect was assigned to the oxidation of Trp-569 residue within the prekallikrein-binding region which is subsequently destructed owing to cleavage of the peptide bond after that residue. One possible pathophysiological consequence of the described effects on kininogens could be the impairment of the normal assembly and triggering of the kinin-forming system on defense cell surfaces.  相似文献   

6.
A new kinin moiety in human plasma kininogens   总被引:1,自引:0,他引:1  
Recently, we isolated a new kinin from human urine and tentatively identified it as [Ala3]-Lys-bradykinin. However, there were inconsistencies between the properties of the naturally occurring new kinin and synthetic [Ala3]-Lys-bradykinin. In the present work, we determined whether the new kinin was released from human plasma kininogen, and further investigated the structure of the new kinin. After incubation of plasma (n = 6) with human urinary kallikrein, kinins were separated by HPLC and measured by RIA. The new kinin and Lys-bradykinin were found representing 23 +/- 3 and 76 +/- 6%, respectively, of total kinins released (2.0 +/- 0.4 micrograms/ml). The new kinin was also released from both purified low- and high-molecular-weight kininogens, representing 40-42% of total kinins released. Amino acid sequencing and composition analysis indicated that the structure of the new kinin was [Hyp3]-Lys-bradykinin (Lys-Arg-Pro-Hyp-Gly-Phe-Ser-Pro-Phe-Arg) and not [Ala3]-Lys-bradykinin. We conclude that an important proportion of human kininogens contain hydroxyproline instead of proline in position three of the bradykinin moiety.  相似文献   

7.
An excessive production of vasoactive and proinflammatory bradykinin-related peptides, the kinins, is often involved in the human host defense against microbial infections. Recent studies have shown that a major fungal pathogen to humans, Candida albicans, can bind the proteinaceous kinin precursor, the high molecular weight kininogen (HK) and trigger the kinin-forming cascade on the cell surface. In this work, we preliminarily characterized a molecular mechanism underlying the HK adhesion to the fungal surface by (i) identification of major kininogen-binding constituents on the candidial cell wall and (ii) mapping the cell wall-binding regions on HK molecule. A major fraction of total fungal kininogen-binding capacity was assigned to β-1,3-glucanase-extractable cell wall proteins (CWP). By adsorption of CWP on HK-coupled agarose gel and mass spectrometric analysis of the eluted material, major putative HK receptors were identified, including Als3 adhesin and three glycolytic enzymes, i.e., enolase 1, phosphoglycerate mutase 1 and triosephosphate isomerase 1. Using monoclonal antibodies directed against selected parts of HK molecule and synthetic peptides with sequences matching selected HK fragments, we assigned the major fungal cell wall-binding ability to a short stretch of amino acids in the C-terminal part of domain 3 and a large continuous region involving the C-terminal part of domain 5 and N-terminal part of domain 6 (residues 479-564). The latter characteristics of HK binding to C. albicans surface differ from those reported for bacteria and host cells.  相似文献   

8.
Macrophages at an inflammatory site release massive amounts of proteolytic enzymes, including lysosomal cysteine proteases, which colocalize with their circulating, tight-binding inhibitors (cystatins, kininogens), so modifying the protease/antiprotease equilibrium in favor of enhanced proteolysis. We have explored the ability of human cathepsins B, K and L to participate in the production of kinins, using kininogens and synthetic peptides that mimic the insertion sites of bradykinin on human kininogens. Although both cathepsins processed high-molecular weight kininogen under stoichiometric conditions, only cathepsin L generated significant amounts of immunoreactive kinins. Cathepsin L exhibited higher specificity constants (kcat/Km) than tissue kallikrein (hK1), and similar Michaelis constants towards kininogen-derived synthetic substrates. A 20-mer peptide, whose sequence encompassed kininogen residues Ile376 to Ile393, released bradykinin (BK; 80%) and Lys-bradykinin (20%) when incubated with cathepsin L. By contrast, cathepsin K did not release any kinin, but a truncated kinin metabolite BK(5-9) [FSPFR(385-389)]. Accordingly cathepsin K rapidly produced BK(5-9) from bradykinin and Lys-bradykinin, and BK(5-8) from des-Arg9-bradykinin, by cleaving the Gly384-Phe385 bond. Data suggest that extracellular cysteine proteases may participate in the regulation of kinin levels at inflammatory sites, and clearly support that cathepsin K may act as a potent kininase.  相似文献   

9.
The mediatory role of kinins in both acute and chronic inflammation within nervous tissues has been widely described. Bradykinin, the major representative of these bioactive peptides, is one of a few mediators of inflammation that directly stimulates afferent nerves due to the broad expression of specific kinin receptors in cell types in these tissues. Moreover, kinins may be delivered to a site of injury not only after their production at the endothelium surface but also following their local production through the enzymatic degradation of kininogens at the surface of nerve cells. A strong correlation between inflammatory processes and neurodegeneration has been established. The activation of nerve cells, particularly microglia, in response to injury, trauma or infection initiates a number of reactions in the neuronal neighborhood that can lead to cell death after the prolonged action of inflammatory substances. In recent years, there has been a growing interest in the effects of kinins on neuronal destruction. In these studies, the overexpression of proteins involved in kinin generation or of kinin receptors has been observed in several neurologic disorders including neurodegenerative diseases such Alzheimer's disease and multiple sclerosis as well as disorders associated with a deficiency in cell communication such as epilepsy. This review is focused on recent findings that provide reliable evidence of the mediatory role of kinins in the inflammatory responses associated with different neurological disorders. A deeper understanding of the role of kinins in neurodegenerative diseases is likely to promote the future development of new therapeutic strategies for the control of these disorders. An example of this could be the prospective use of kinin receptor antagonists.  相似文献   

10.
Kininogens are multifunctional proteins involved in a variety of regulatory processes including the kinin-formation cascade, blood coagulation, fibrynolysis, inhibition of cysteine proteinases etc. A working hypothesis of this work was that the properties of kininogens may be altered by oxidation of their methionine residues by reactive oxygen species that are released at the inflammatory foci during phagocytosis of pathogen particles by recruited neutrophil cells. Two methionine-specific oxidizing reagents, N-chlorosuccinimide (NCS) and chloramine-T (CT), were used to oxidize the high molecular mass (HK) and low molecular mass (LK) forms of human kininogen. A nearly complete conversion of methionine residues to methionine sulfoxide residues in the modified proteins was determined by amino acid analysis. Production of kinins from oxidized kininogens by plasma and tissue kallikreins was significantly lower (by at least 70%) than that from native kininogens. This quenching effect on kinin release could primarily be assigned to the modification of the critical Met-361 residue adjacent to the internal kinin sequence in kininogen. However, virtually no kinin could be formed by human plasma kallikrein from NCS-modified HK. This observation suggests involvement of other structural effects detrimental for kinin production. Indeed, NCS-oxidized HK was unable to bind (pre)kallikrein, probably due to the modification of methionine and/or tryptophan residues at the region on the kininogen molecule responsible for the (pro)enzyme binding. Tests on papain inhibition by native and oxidized kininogens indicated that the inhibitory activity of kininogens against cysteine proteinases is essentially insensitive to oxidation.  相似文献   

11.
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.  相似文献   

12.
Dendritic cells play a major role in the induction of both innate and acquired immune responses against pathogenic invaders. These cells are also able to sense endogenous activation signals liberated by injured tissues even in the absence of infection. In the present work, we demonstrate that kinins mobilize dendritic cells to produce IL-12 through activation of the B(2) bradykinin receptor subtype and that bradykinin-induced IL-12 responses are tightly regulated both by angiotensin-converting enzyme, a kinin-degrading peptidase, and by endogenous IL-10. Using a mouse model of allergic inflammation, we further show that addition of bradykinin to OVA during immunization results in decreased eosinophil infiltration on Ag challenge. The latter effect was demonstrated to be due to IL-12-driven skewing of Ag-specific T cell responses to a type 1 cytokine profile. Our data thus indicate that kinin peptides can serve as danger signals that trigger dendritic cells to produce IL-12 through activation of B(2) bradykinin receptors.  相似文献   

13.
Kallikreins cleave plasma kininogens to release the bioactive peptides bradykinin (BK) or kallidin (Lys-BK). These peptides then activate widely disseminated B2 receptors with consequences that may be either noxious or beneficial. We used cultured cells to show that kallikrein can bypass kinin release to activate BK B2 receptors directly. To exclude intermediate kinin release or kininogen uptake from the cultured medium, we cultured and maintained cells in medium entirely free of animal proteins. We compared the responses of stably transfected Chinese hamster ovary (CHO) cells that express human B2 receptors (CHO B2) and cells that coexpress angiotensin I-converting enzyme (ACE) as well (CHO AB). We found that BK (1 nM or more) and tissue kallikrein (1-10 nM) both significantly increased release of arachidonic acid beyond unstimulated baseline level. An enzyme-linked immunoassay for kinin established that kallikrein did not release a kinin from CHO cells. We confirmed the absence of kininogen mRNA with RT-PCR to rule out kininogen synthesis by CHO cells. We next tested an ACE inhibitor for enhanced BK receptor activation in the absence of kinin release and synthesized an ACE-resistant BK analog as a control for these experiments. Enalaprilat (1 microM) potentiated kallikrein (100 nM) in CHO AB cells but was ineffective in CHO B2 cells that do not bear ACE. We concluded that kallikrein activated B2 receptors without releasing a kinin. Furthermore, inhibition of ACE enhanced the receptor activation by kallikrein, an action that may contribute to the manifold therapeutic effects of ACE inhibitors.  相似文献   

14.
Transforming growth factor-beta1 (TGF-beta1) has a biphasic effect on the growth of renal epithelial cells. In transformed cells, TGF-beta1 appears to accelerate the proliferation of malignant cells. The diverse cellular functions of TGF-beta1 are regulated by three high-affinity serine/threonine kinase receptors, namely TbetaRI, TbetaRII and TbetaRIII. The renal serine protease tissue kallikrein acts on its endogenous protein substrate kininogen to form kinin peptides. The cellular actions of kinins are mediated through B1 and B2 G protein-coupled rhodopsin receptors. Both kinin peptides and TGF-beta1 are mitogenic, and therefore may play an important role in carcinogenesis. Experiments were designed to immunolabel tissue kallikrein, TGF-beta1, TbetaRII, TbetaRIII and kinin receptors using specific antibodies on serial sections of normal kidney and clear-cell renal carcinoma (CCRC) tissue, which included both the tumour and the adjacent renal parenchyma. The essential result was the localisation of tissue kallikrein, kinin B 1 and B 2 receptors and TGF-beta1 primarily on the cell membranes of CCRC cells. In the distal and proximal tubules of the renal parenchyma adjacent to the carcinoma (RPTAC), immunolabelling for tissue kallikrein was reduced, but the expression of kinin B1 and B2 receptors was enhanced. Immunolabelling for TbetaRII and TbetaRIII was more pronounced in the proximal tubules of the tissue adjacent to the carcinoma when compared to the normal kidney. The expression of tissue kallikrein, kinin receptors, and TbetaRII and TbetaRIII may be relevant to the parenchymal invasion and metastasis of clear-cell renal carcinoma.  相似文献   

15.
During dermal injury and inflammation the serine proteases kallikreins cleave endogenous, multifunctional substrates (kininogens) to form bradykinin and kallidin. The actions of kinins are mediated by preferential binding to constitutively expressed kinin-B2 receptors or inducible kinin-B1 receptors. A feature of the kinin-B1 receptors is that they show low levels of expression, but are distinctly upregulated following tissue injury and inflammation. Because recent evidence suggested that kinin-B1 receptors may perform a protective role during inflammation, we investigated the specific occurrence of the kallikrein-kinin components in skin biopsies obtained from normal skin, patients undergoing surgery, basalioma, lichenificated atopic eczema, and psoriasis. The tissue was immunolabeled in order to determine the localisation of tissue pro-kallikrein, kallikrein, kininogen and kinin receptors. The kinin components were visualised in normal, diseased and traumatised skin, except that no labelling was observed for kininogen in normal skin. Of the five types of tissue examined, upregulation of kinin-B1 receptors was observed only in skin biopsies obtained following surgery. In essence, the expression of kinin-B1 receptors did not appear to be enhanced in the other biopsies. Within the multiple steps of the inflammatory cascade in wound healing, our results suggest an important regulatory role for kinin-B1 receptors during the first phase of inflammation following injury.  相似文献   

16.
The kallikrein-kinin system is activated during inflammation and plays a major role in the inflammatory process. One of the main mechanisms of kinin action includes the modulation of neutrophil function employing both receptors for kinins, B1 and B2. In this report we show by the use of B1 receptor-deficient mice that neutrophil migration in inflamed tissues is dependent on kinin B1 receptors. However, there is no change in circulating leukocyte number and composition after genetic ablation of this receptor. Furthermore, apoptosis of neutrophils necessary for the resolution of persistent inflammatory processes is impaired in mice lacking the B1 receptor. We also show that this receptor is expressed on neutrophils, thus it may be directly involved in the induction of apoptosis in these cells after prolonged activation at inflamed sites. In conclusion, our data show that the kinin B1 receptor modulates migration and the life span of neutrophils at sites of inflammation and may be therefore an important drug target in the therapy of inflammatory diseases.  相似文献   

17.
The types of kinins released from purified native, single chain human high and low molecular mass kininogens (HMMKs and LMMKs, respectively) by purified human urinary kallikrein were separated by reverse-phase HPLC and quantitated by the rat uterus bioassay. [Hyp3]-lysyl-bradykinin, a recently discovered kinin, represented up to 58% of the biological activity released from 4 individual HMMK preparations purified from 4 different healthy volunteers. In contrast, the majority of the biological activity released from LMMKs purified from pooled plasma was identified as Lys-bradykinin and [Hyp3]-lysyl-bradykinin represented only 6.4 +/- 3.8%. These findings indicate posttranslation hydroxylation of human kininogens and suggest a preference of HMMKs for this modification.  相似文献   

18.
The systematic analysis of structure-activity relationships of insect kinins on two heterologous receptor-expressing systems is described. Previously, kinin receptors from the southern cattle tick, Boophilus microplus (Canestrini), and the dengue vector, the mosquito Aedes aegypti (L.), were functionally and stably expressed in CHO-K1 cells. In order to determine which kinin residues are critical for the peptide-receptor interaction, kinin core analogs were synthesized as an Ala-replacement series of the peptide FFSWGa and tested by a calcium bioluminescence plate assay. The amino acids Phe(1) and Trp(4) were essential for activity of the insect kinins in both receptors. It was confirmed that the pentapeptide kinin core is the minimum sequence required for activity and that the C-terminal amide is also essential. In contrast to the tick receptor, a large increase in efficacy is observed in the mosquito receptor when the C-terminal pentapeptide is N-terminally extended to a hexapeptide. The aminoisobutyric acid (Aib)-containing analog, FF[Aib]WGa, was as active as superagonist FFFSWGa on the mosquito receptor in contrast to the tick receptor where it was statistically more active than FFFSWGa by an order of magnitude. This restricted conformation Aib analog provides information on the conformation associated with the interaction of the insect kinins with these two receptors. Furthermore, the analog FF[Aib]WGa has been previously shown to resist degradation by the peptidases ACE and nephrilysin and represents an important lead in the development of biostable insect kinin analogs that ticks and mosquitoes cannot readily deactivate.  相似文献   

19.
Characterization of bradykinin receptors in peripheral organs.   总被引:3,自引:0,他引:3  
Bradykinin (BK) and related kinins are potent stimulants of the rabbit jugular vein, the hamster urinary bladder, and the guinea pig trachea. The characterization of kinin receptors in these tissues was made with agonists and antagonists. Results obtained with agonists indicate that bradykinin and kallidin are much more active than des-Arg9-BK and suggest the presence of B2 receptors in the three organs. Some new agonists were also tested and the BK analogue, [Hyp3,Tyr(Me)8]BK, was found to be a potent and selective stimulant of the three preparations, with pD2 values of 8.56, 8.00, and 8.39, respectively, but inactive on the rabbit aorta (a B1-receptor system). Contractile effects of kinins in the rabbit jugular vein and hamster urinary bladder were reduced or eliminated by B2-receptor antagonists but at different concentration levels; e.g., acetyl-D-Arg[Hyp3,D-Phe7]BK showed pA2 values of 7.78 on the rabbit jugular vein but only 5.72 on hamster urinary bladder. This compound contracted the guinea-pig trachea and was found to be inactive as an antagonist on this preparation. Contractions of the hamster urinary bladder and the guinea-pig trachea in response to bradykinin were markedly reduced or eliminated by indomethacin and by BW 755C, while those of the rabbit jugular vein were not modified. The present findings indicate that the myotropic effect of kinins on the rabbit jugular vein depends on the activation of B2 receptors and suggest that B2 receptors are largely responsible also for the response of the hamster urinary bladder. B2 receptors and (or) a nonreceptor mechanism appear to be involved in the stimulant effects of the kinin agonists and some antagonists in the guinea-pig trachea.  相似文献   

20.
《Peptides》2012,33(12):2488-2496
An excessive production of vasoactive and proinflammatory bradykinin-related peptides, the kinins, is often involved in the human host defense against microbial infections. Recent studies have shown that a major fungal pathogen to humans, Candida albicans, can bind the proteinaceous kinin precursor, the high molecular weight kininogen (HK) and trigger the kinin-forming cascade on the cell surface. In this work, we preliminarily characterized a molecular mechanism underlying the HK adhesion to the fungal surface by (i) identification of major kininogen-binding constituents on the candidial cell wall and (ii) mapping the cell wall-binding regions on HK molecule. A major fraction of total fungal kininogen-binding capacity was assigned to β-1,3-glucanase-extractable cell wall proteins (CWP). By adsorption of CWP on HK-coupled agarose gel and mass spectrometric analysis of the eluted material, major putative HK receptors were identified, including Als3 adhesin and three glycolytic enzymes, i.e., enolase 1, phosphoglycerate mutase 1 and triosephosphate isomerase 1. Using monoclonal antibodies directed against selected parts of HK molecule and synthetic peptides with sequences matching selected HK fragments, we assigned the major fungal cell wall-binding ability to a short stretch of amino acids in the C-terminal part of domain 3 and a large continuous region involving the C-terminal part of domain 5 and N-terminal part of domain 6 (residues 479–564). The latter characteristics of HK binding to C. albicans surface differ from those reported for bacteria and host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号