共查询到20条相似文献,搜索用时 8 毫秒
1.
Hydrogels with pH-sensitive poly(acrylic acid) (PAAc) chains and biodegradable acryloyl-poly(-caprolactone)-2-hydroxylethyl methacrylate (AC-PCL-HEMA) chains were designed and synthesized. The morphology of hydrogel was observed by scanning electron microscopy. The degradation of the hydrogel in the presence of Pseudomonas lipase was studied. The in vitro release of bovine serum albumin from the hydrogel was investigated. Cytotoxicity study shows that the AC-PCL-HEMA/AAc copolymer exhibits good biocompatibility. Cell adhesion and migration into the hydrogel networks were evaluated by using different cell lines. The hydrogel with a lower cross-linking density and a larger pore size exhibited a better performance for cells migration. 相似文献
2.
A series of hydrogels with both thermoresponsive and completely biodegradable properties was developed for aqueous encapsulation and controlled release of hydrophilic drugs in response to temperature change. The hydrogels were prepared in phosphate-buffered saline (pH 7.4) through free radical polymerization of N-isopropylacrylamide (NIPAAm) monomer and a dextran macromer containing multiple hydrolytically degradable oligolactate-2-hydroxyethyl methacrylate units (Dex-lactateHEMA). Swelling measurement results demonstrated that four gels with feeding weight ratios of NIPAAm:Dex-lactateHEMA = 7:2, 6:3, 5:4, and 4:5 (w/w) were thermoresponsive by showing a lower critical solution temperature at approximately 32 degrees C. The swelling and degradation of the hydrogels strongly depended on temperature and hydrogel composition. An empirical mathematical model was established to describe the fast water absorption at the early stage and deswelling at the late stage of the hydrogels at 37 degrees C. Two hydrophilic model drugs, methylene blue and bovine serum albumin, were loaded into the hydrogels during the synthesis process. The molecular size of the drugs, the hydrophilicity and degradation of the hydrogels, and temperature played important roles in controlling the drug release. 相似文献
3.
Reversible addition-fragmentation chain transfer (RAFT) polymerization technique was used for the fabrication of stable core cross-linked micelles (CCL) with thermoresponsive and degradable cores. Well-defined poly(2-methacryloyloxyethyl phosphorylcholine), poly(MPC) macroRAFT agent, was first synthesized with narrow molecular weight distribution via the RAFT process. These CCL micelles (termed as nanogels) with hydrophilic poly(MPC) shell and thermoresponsive core consisting of poly(methoxydiethylene glycol methacrylate) (poly(MeODEGM) and poly(2-aminoethyl methacrylamide hydrochloride) (poly(AEMA) were then obtained in a one-pot process by RAFT polymerization in the presence of an acid degradable cross-linker. These acid degradable nanogels were efficiently synthesized with tunable sizes and low polydispersities. The encapsulation efficiencies of the nanogels with different proteins such as insulin, BSA, and β-galactosidase were studied and found to be dependent of the cross-linker concentration, size of protein, and the cationic character of the nanogels imparted by the presence of AEMA in the core. The thermoresponsive nature of the synthesized nanogels plays a vital role in protein encapsulation: the hydrophilic core and shell of the nanogels at low temperature allow easy diffusion of the proteins inside out and, with an increase in temperature, the core becomes hydrophobic and the nanogels are easily separated out with entrapped protein. The release profile of insulin from nanogels at low pH was studied and results were analyzed using bicinchoninic assay (BCA). Controlled release of protein was observed over 48 h. 相似文献
4.
T Chandy C P Sharma 《Biomaterials, artificial cells, and immobilization biotechnology : official journal of the International Society for Artificial Cells and Immobilization Biotechnology》1991,19(4):745-760
Chitosan, a polysaccharide, having structural characteristics similar to glycosaminoglycans, seems to be nontoxic and bioabsorbable. This study highlights the use of chitosan matrix for controlled drug delivery systems. The steroid drugs, namely testosterone, progesterone and beta-oestradiol were mixed with chitosan and the films were prepared by evaporation technique. The in vitro release profile of these steroids from the film matrix was monitored, as a function of time, in phosphate buffered saline (PBS, pH 7.4) at 37 degree C using a U-V-spectrophotometer. The degradation, of these chitosan and drug loaded chitosan films, was also investigated by weight loss and tensile strength studies. The steroid release from chitosan films was compared with the release of these drugs from their microbeads. It appears, the films and the microbeads stayed intact during the dissolution study of 90 days and the possibility of using these systems in contraceptive applications and novel drug delivery systems are discussed. 相似文献
5.
A N,N-dimethylacrylamide-based hydrogel (2) with the new cross-linker (ethylenedioxy) bis[2,2'-(N-acryloylamino)ethane] (1) has been prepared, and its physicochemical properties in aqueous solution were studied. Three different native proteins (lysozyme, bovine serum albumin, and rabbit IgG) were encapsulated within the polymeric matrix 2, and the kinetics of their release from the swollen hydrogel were determined. The rate of protein release exhibits a clear dependence on both the molecular weight of the protein and the amount of cross-linker utilized to prepare the hydrogel. This is reflected by the fact that the low molecular weight proteins are released at an increased rate versus higher molecular weight proteins. In addition a greater amount of protein is released from the hydrogels with a lower percentage of cross-linker. The polymerization procedure used in this study is sufficiently mild to safeguard the functional integrity of attendant biomolecules as determined by the retention of catalytic activity of encapsulated alpha-chymotrypsin and aldolase catalytic antibody 38C2. The potential utility of these hydrogels for the controlled release of bioactive agents in vivo is strengthened by both their lack of toxicity against human dermal fibroblasts and their lack of immunogenicity in mice. 相似文献
6.
In this work, a simple but effective approach was proposed for preparing biodegradable plastic foams with a high content of castor oil. First of all, castor oil reacted with maleic anhydride to produce maleated castor oil (MACO) without the aid of any catalyst. Then plastic foams were synthesized through free radical initiated copolymerization between MACO and diluent monomer styrene. With changes in MACO/St ratio and species of curing initiator, mechanical properties of MACO foams can be easily adjusted. In this way, biofoams with comparable compressive stress at 25% strain as commercial polyurethane (PU) foams were prepared, while the content of castor oil can be as high as 61 wt %. The soil burial tests further proved that the castor oil based foams kept the biodegradability of renewable resources despite the fact that some petrol-based components were introduced. 相似文献
7.
《Trends in biotechnology》1987,5(4):102-106
It is one thing to produce pharmacologically active peptides: it is quite another to formulate them as practical and effective drugs. For many polypeptides, particularly hormones, it is desirable to release the drug continuously at a controlled rate over a period of weeks or even months. This paper describes the development of injectable, biodegradable depot formulations of the highly potent, synthetic analogue of luteinizing hormone releasing hormone, d-Ser (But)6, Azygly10LHRH, (‘Zoladex’1, ICI 118630) which causes a selective castration-like effect in animals and man which leads to regression of hormone responsive tumours. This technology has been applied successfully to give controlled release formulations of polypeptides having a range of molecular weights. 相似文献
8.
Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application
Banerjee S Siddiqui L Bhattacharya SS Kaity S Ghosh A Chattopadhyay P Pandey A Singh L 《International journal of biological macromolecules》2012,50(1):198-206
Interpenetrating polymer network (IPN) hydrogel microspheres of sodium carboxymethyl cellulose (NaCMC) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for oral controlled release delivery of a non-steroidal anti-inflammatory drug, diclofenac sodium (DS). The microspheres were prepared with various ratios of NaCMC to PVA, % drug loading and extent of crosslinking density at a fixed polymer weight. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acid and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results of this study suggest that DS loaded IPN microspheres were suitable for oral controlled release application. 相似文献
9.
Ajit P. Rokhade Namdev B. Shelke Sangamesh A. Patil Tejraj M. Aminabhavi 《Carbohydrate polymers》2007,69(4):678-687
Interpenetrating polymer network (IPN) microspheres of chitosan (CS) and methylcellulose (MC) were prepared by emulsion-crosslinking in the presence of glutaraldehyde (GA) as a crosslinker. Theophylline (THP), an antiasthmatic drug was encapsulated into IPN microspheres under varying ratios of MC and CS, % drug loading and amount of GA added. IPNs have shown better mechanical properties than pure CS. Cross-link density of the matrices was significantly affected by the amount of GA and MC. Microspheres were characterized by Fourier transform infrared (FTIR) spectroscopy to assess the formation of IPN structure and to confirm the absence of chemical interactions between drug, polymer and crosslinking agent. Particle size was measured by laser light scattering technique. Microspheres with the average particle sizes ranging from 119 to 318 μm were produced. Differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) studies were performed to understand the crystalline nature of drug after encapsulation into IPN microspheres. Theophylline encapsulation of up to 82% was achieved as measured by UV spectrometer. Equilibrium swelling was performed in distilled water. In vitro release studies were performed in both 0.1 N HCl and pH 7.4 buffer solutions. These data indicated a dependence of drug release on the extent of crosslinking and amount of MC added during the preparation of microspheres. The release was extended up to 12 h and release rates were fitted to an empirical equation to compute the diffusional parameters, which indicated a slight deviation from the Fickian trend for the release of theophylline. 相似文献
10.
Yoon-Jeong Park Jin Chang Pen-Chung Chen Victor Chi-Min Yang 《Biotechnology and Bioprocess Engineering》2001,6(5):326-331
With the aim of developing a pH-sensitive controlled drug release system, a poly (L-lysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel
was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release
at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing
another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization
method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers
were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared
showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations
of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase.
Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling
of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery
platform to modulate drug release by pH-sensitivity and ionic interaction. 相似文献
11.
We report the encapsulation of MIN6 cells, a pancreatic beta-cell line, using thermally induced gelable materials. This strategy uses aqueous solvent and mild temperatures during encapsulation, thereby minimizing adverse effects on cell function and viability. Using a 2:1 mixture of PNIPAAm-PEG-PNIPAAm tri-block copolymer and PNIPAAm homopolymer that exhibit reversible sol-to-gel transition at approximately 30 degrees C, gels were formed that exhibit mechanical integrity, and are stable in H(2)O, PBS and complete DMEM with negligible mass loss at 37 degrees C for 60 days. MTT assays showed undetectable cytotoxicity of the polymers towards MIN6 cells. A simple microencapsulation process was developed using vertical co-extrusion and a 37 degrees C capsule collection bath containing a paraffin layer above DMEM. Spherical capsules with diameters ranging from 500 to 900 microm were formed. SEM images of freeze-dried capsules with PBS as the core solution showed homogenous gel capsule membranes. Confocal microscopy revealed that the encapsulated cells tended to form small aggregates over 5 days, and staining for live and dead cells showed high viability post-encapsulation. A static glucose challenge with day-5 cultured microencapsulated cells exhibited glucose-dependent insulin secretion comparable to controls of free MIN6 cells grown in monolayers. These results demonstrate the potential use of these thermo-responsive polymers as cell encapsulation membranes. 相似文献
12.
In this study we examine the release profile of bovine serum albumin (BSA) from a porous polymer matrix derived from a co-continuous polymer blend. The porosity is generated through the selective extraction of one of the continuous phases. This is the first study to examine the approach of using morphologically tailored co-continuous polymer blends as a template for generating porous polymer materials for use in controlled release. A method for the preparation of polymeric capsules is introduced, and the effect of matrix pore size and surface area on the BSA release profile is investigated. Furthermore, the effect of surface charge on release is examined by surface modification of the porous substrate using layer-by-layer deposition techniques. Synthetic, nonerodible polymer, high-density polyethylene (HDPE), was used as a model substrate prepared by melt blending with two different styrene-ethylene-butylene copolymers. Blends with HDPE allow for the preparation of porous substrates with small pore sizes (300 and 600 nm). A blend of polylactide (PLA) and polystyrene was also used to prepare porous PLA with a larger pore size (1.5 microm). The extents of interconnectivity, surface area, and pore dimension of the prepared porous substrates were examined via gravimetric solvent extraction, BET nitrogen adsorption, mercury porosimetry, and image analysis of scanning electron microscopy micrographs. With a loading protocol into the porous HDPE and PLA involving the alternate application of pressure and vacuum, it is shown that virtually the entire porous network was accessible to BSA loading, and loading efficiencies of between 80% and 96% were obtained depending on the pore size of the carrier and the applied pressure. The release profile of BSA from the microporous structure was monitored by UV spectrophotometry. The influence of pore size, surface area, surface charge, and number of deposited layers is demonstrated. It is shown that an effective closed-cell structure in porous PLA can be prepared, effectively eliminating all short-term BSA release. 相似文献
13.
Acoustically active liposomes for drug encapsulation and ultrasound-triggered release 总被引:9,自引:0,他引:9
Acoustically active liposomes (AAL), previously developed as ultrasound contrast agents, contain small amounts of air. These AAL have potential to carry pharmaceutics and their acoustic activity could enable them to respond to ultrasound stimulation by releasing their contents. Since liposomes can entrap many kinds of drugs, if such entrapment did not affect their echogenicity, then the release of contents could potentially be controlled by ultrasound stimulation. The aim of this research was to investigate the capacity of acoustically active liposomes for hydrophilic molecule encapsulation and to determine their sensitivity to ultrasound-triggered release. Liposomes, composed of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and cholesterol, were made acoustically active by hydrating a lipid film, sonication, freezing in the presence of mannitol, lyophilization, and rehydration. As a test molecule, calcein was added in the hydration step. The procedure for generating acoustically active liposomes was compatible with an encapsulation efficiency of 15% or more. The presence of mannitol during freeze-drying was essential not only for generation of acoustic activity but also for efficient encapsulation. Ultrasound-triggered release was achieved by applying 1 MHz ultrasound at 2 W/cm2 for 10 s. The inclusion of 4% diheptanolyphosphatidylcholine (DHPC) increased the sensitivity of liposomes to ultrasound stimulation and resulted in very efficient stimulated release of contents (1/3 released in 10 s, 2/3 released in six such applications). Release of contents was highly correlated with the loss of air induced either by ultrasound or rapid pressure reduction. These encapsulation and triggered release techniques are highly efficient, and hence may be applicable to drug delivery. 相似文献
14.
Plant cell cultures of Peganum harmala converted geranyl acetate to geraniol. Although the reaction started immediately after feeding, there was disappearance of both product and substrate. Geranyl acetate at 100 mg l–1 when fed to 100 ml Peganum harmala suspensions (16% packed cell volume) was completely used within 24 h without accumulation of any product. Similarly, linalyl acetate and its biotransformation products, linalool and -terpineol, disappeared. Controlled-release polymer discs made from poly-2-hydroxyethyl methacrylate and containing concentrations of geranyl acetate or linalyl acetate produced greatly extended concentrations of these substrates and their biotransformation products (from about 1 day to over 12 days). The concentrations of substrates remained at around 5 mg l–1throughout the experiments, while the concentrations of biotransformation products increased from 10 mg l–1to 55.5 mg l–1 for geraniol, from 5 mg l–1 to 14 mg l–1 for linalool, and 5 mg l–1 to 12 mg l–1 for -terpineol compared to the control value. Also low concentrations (30–200 g/disc) of product were taken up by the polymer over 10 days. 相似文献
15.
Novel linear and star-shaped oligolactide macromers were synthesized by ring-opening oligomerization of L-lactide in the presence of suitable initiators (di- and polyols, amino acid esters) and subsequent endgroup-functionalization of the formed oligolactides with methacrylate moities. The obtained liquid macromers are valuable building blocks for the preparation of biocompatible polymer networks. Based on these macromers, the fabrication and the material properties including biodegradation behaviour of highly porous polymer network devices will be described. The application of these materials as resorbable scaffolds in tissue engineering will be discussed. 相似文献
16.
A conducting molecularly imprinted polymer (CMIP) film, based on polypyrrole, was electrosynthesized for selective uptake/release and determination of naproxen. The film was prepared by incorporation of a template anion (naproxen) during the electropolymerization of pyrrole into a platinum electrode using the cyclic voltammetry method. Overoxidized polypyrrole films with cavities complementary to the template were used as a potential-induced selective recognition element in the solid-phase sorbent. Various important fabricating factors, which control the performance of the CMIP film, were investigated using fluorescence spectroscopy. The measured fluorescence intensities of released solutions were related to the concentrations of naproxen taken up into the films. Several key parameters such as applied potential and time for uptake and release were varied to achieve the optimal sorption procedure. The film template with naproxen exhibited excellent selectivity over some interference. The calibration graphs were linear in the ranges of 5×10(-8) to 3×10(-7)molml(-1) and 7×10(-6) to 8×10(-4)molml(-1), and the limit of detection was 1×10(-8)molml(-1). The CMIP films, as the electrochemically controlled solid-phase sorbent, were applied for the selective cleanup and quantification of trace amounts of naproxen from physiological samples. Scanning electron microscopy confirmed the nanostructure morphology of the films. 相似文献
17.
A polymeric prodrug, PEGylated indomethacin (MPEG-indo), was prepared and then used to interact with α-cyclodextrin (α-CD) in their aqueous mixed system. This process could lead to the formation of supramolecular hydrogel under mild conditions and simultaneous encapsulation of MPEG-indo in the hydrogel matrix. For the formed supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated with respect to the effects of MPEG-indo and α-CD amounts by dynamic and steady rheological tests. Meanwhile, the possibility of using this hydrogel matrix as injectable drug delivery system was also explored. By in vitro release and cell viability tests, it was found that the encapsulated MPEG-indo could exhibit a controlled and sustained release behavior as well as maintain its biological activity. 相似文献
18.
《Life sciences》1993,53(18):PL279-PL284
In vitro evidence is presented showing toxicity of neem oil on sperm-egg interaction in mouse. Cumulus oophorus-enclosed ova, inseminated with capacitated spermatozoa, were cultured in 1 ml of in vitro fertilization (IVF) medium and overlayered by 1 ml of different concentrations of neem oil (1, 5, 10, 25, 50 and 100%) for IVF duration of 4h. At the end of incubation, ova were allowed to grow in neem oil-free culture medium and assessed for fertilization, first cleavage (2-cell formation) and blastocyst formation in vitro at 4–14h, 24h and 108h post-insemination respectively. The study showed that the presence of neem oil at concentrations of 10, 25 and 50% caused inhibition of IVF in a dose-dependent manner. The toxic effect of exposure of 25 and 50% neem oil was further carried over to the first cleavage of the resulting fertilized ova and the toxic effect of 5, 10, 25, and 50% was carried over to the blastocyst formation from the resulting fertilized ova when grown in neem-oil free culture medium. A total of 94.1% inhibition of 2-cell formation and 100% inhibition of blastocyst formation from the inseminated ova was observed in 50 and 25% neem oil-treated groups respectively. Neem oil at 100% concentration caused 100% degeneration of ova at 1h of sperm-ova coculture. The study showed a direct toxic effect of neem oil on sperm-egg interaction in vitro and encourages research investigations of this herbal product as a pre-coital contraceptive. 相似文献
19.
The encapsulation and release kinetics of guanosine from liposomes and polyethylene glycol (PEG)-modified liposomes are reported. Specifically, the influence of PEG chain length, PEGylation level, lipid type, drug-loading level, temperature, and solution conditions (i.e., salt and pH effects) on the rate and mechanism for release have been determined. Increasing PEGylation significantly reduced the guanosine release kinetics; this is more significant for greater molecular weight PEG and is correlated with the PEG layer thickness. Further, the mechanism for guanosine release changed from diffusion to interfacial control as the PEG level increased. The interfacial structure introduced by PEG also increased the activation energy required for guanosine transport across the lipid bilayer from 14 to 22 kJmol?1. Findings from this study provide further insight into optimizing the formulation of Stealth liposomes. 相似文献
20.
Semi-interpenetrating polymer network (IPN) microspheres of acrylamide grafted on dextran (AAm-g-Dex) and chitosan (CS) were prepared by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinker. The grafting efficiency was found to be 94%. Acyclovir, an antiviral drug with limited water solubility, was successfully encapsulated into IPN microspheres by varying the ratio of AAm-g-Dex and CS, % drug loading and amount of GA. Microspheres were characterized by FT-IR spectroscopy to assess the formation of IPN structure and to confirm the absence of chemical interactions between drug, polymer and crosslinking agent. Particle size was measured using laser light scattering technique. Microspheres with average particle sizes in the range of 265–388 μm were obtained. Differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) studies were performed to understand the crystalline nature of drug after encapsulation into IPN microspheres. Acyclovir encapsulation of up to 79.6% was achieved as measured by UV spectroscopy. Both equilibrium and dynamic swelling studies were performed in 0.1 N HCl. Diffusion coefficients (D) and diffusional exponents (n) for water transport were determined using an empirical equation. In vitro release studies indicated the dependence of drug release rates on both the extent of crosslinking and amount of AAm-g-Dex used in preparing microspheres; the slow release was extended up to 12 h. The release rates were fitted to an empirical equation to compute the diffusional exponent (n), which indicated non-Fickian trend for the release of acyclovir. 相似文献