首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable and lectin-recognizable DNA-carbohydrate conjugates were prepared by diazo coupling of lactose and cellobiose derivatives to fragmented salmon testes DNA. The diazo coupling is suggested to take place selectively to guanine bases since the amount of lactose moiety introduced was directly proportional to the G content of various DNAs with different G contents. According to the CD spectra, the conjugates bearing carbohydrate less than 25% content kept a typical B-type conformation similar to native DNA. The conjugates possessed higher melting temperature and stronger nuclease resistance both to exo- and endonucleases than native DNA. Gel shift assay and fluorescence binding assay showed that the DNA-lactose conjugates were specifically bound to galactose-specific lectin RCA(120) with strong binding affinity (Ka = 10(4)-10(5) M(-1)) due to glycoside cluster effect. This facile method will be a useful protocol of molecular design for cell-targeted gene therapy.  相似文献   

2.
A chemoenzymatic approach for the efficient synthesis of DNA-carbohydrate conjugates was developed and applied to an antibody-based strategy for the detection of DNA glycoconjugates. A phosphoramidite derivative of N-acetylglucosamine (GlcNAc) was synthesized and utilized to attach GlcNAc sugars to the 5'-terminus of DNA oligonucleotides by solid-phase DNA synthesis. The resulting GlcNAc-DNA conjugates were used as substrates for glycosyl transferase enzymes to synthesize DNA glycoconjugates. Treatment of GlcNAc-DNA with beta-1,4-galactosyl transferase (GalT) and UDP-Gal produced N-acetyllactosamine-modified DNA (LacNAc-DNA), which could be converted quantitatively to the trisaccharide Lewis X (LeX)-DNA conjugate by alpha-1,3-fucosyltransferase VI (FucT) and GDP-Fuc. The facile enzymatic synthesis of LeX-DNA from GlcNAc-DNA also was accomplished in a one-pot reaction by the combined action of GalT and FucT. The resulting glycoconjugates were characterized by gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and glycosidase digestion experiments. Covalent modification of the 5'-terminus of DNA with carbohydrates did not interfere with the ability of DNA glycoconjugates to hybridize with complementary DNA, as indicated by UV thermal denaturation analysis. The trisaccharide DNA glycoconjugate, LeX-DNA, was detected by a dual DNA hybridization/monoclonal antibody (mAb) detection protocol ("Southwestern"): membrane-immobilized LeX-DNA was visualized by Southern detection with a radiolabeled complementary DNA probe and by Western chemiluminescence detection with a mAb specific for the LeX antigen. The efficient chemoenzymatic synthesis of DNA glycoconjugates and the Southwestern detection protocol may facilitate the application of glycosylated DNA to cellular targeting and DNA glycoconjugate detection strategies.  相似文献   

3.
A versatile nanoplatform based on magnetic glyconanoparticles (glyco-ferrites) to attach well-oriented antibodies is described. An efficient ligand exchange process has been used to prepare water-soluble 6-nm-sized core-shell Fe(3)O(4)@Au nanoparticles bearing amphiphilic carbohydrates and aliphatic ethylene glycol chains ended in a carboxyl group. The covalent immobilization through the carboxyl group of an Fc receptor (protein G) enables successful well-oriented capture of immunoglobulins G onto the magnetic glyconanoparticle. A thorough characterization of structure and biofunctionality of the constructs is carried out by different techniques. The selective immunolabeling of cells by the antibody-magnetic glyconanoparticle conjugates is demonstrated by magnetic resonance imaging (MRI), as well as by fluorescence techniques.  相似文献   

4.
The design, synthesis, cytotoxicity, and biological evaluation of carbohydrate/C-glycoside conjugates are described. The design concept is predicted on the idea that physiological barriers like the blood brain barrier could be crossed selectively by using glucose or glucose derivative/drug conjugates. The study demonstrates that, (1) carbohydrates and C-glycosides can be bonded at nonanomeric positions by the reaction of carbohydrate triflates with C-glycoside alkoxydes in the presence of DMPU; (2) there is a structure-activity relationship between the cytotoxicity of the conjugate and the nature of the carbohydrate residue; and (3) peracetylated hexose keto-C-glycoside conjugates are the most cytotoxic keto-C-glycosides.  相似文献   

5.
Development of efficient and safe gene carrier is the main hurdle for successful gene therapy till date. Poor water solubility and low transfection efficiency of chitosan are the main drawbacks to be efficient gene carrier for successful gene therapy. In this work, PAMAM conjugated chitosan was prepared through naphthalimide moiety by simple substitution reaction. The synthesis of the chitosan conjugates was confirmed by FTIR, 1H NMR and XRD analyses. The conjugates showed enhanced DNA binding capability compared to that of unmodified chitosan. Moreover, the conjugates showed minimal cytotoxicity compared to that of polyethyleneimine (PEI, 25 kDa) and also showed good blood compatibility with negligible haemolysis. The transfection efficiency of the conjugate was significantly increased compared to that of unmodified chitosan and it also surpassed the transfection efficiency by PEI. Therefore, PAMAM conjugated chitosan can be used safely as alternate efficient gene delivery vector in gene therapy.  相似文献   

6.
Oligoribonucleotide conjugates carrying apolar carbohydrates at the 5′-end and the corresponding siRNA duplexes have been prepared using phosphoramidite chemistry. All the carbohydrate-siRNA derivatives were compatible with RNA interference machinery if transfected with oligofectamine. In the absence of a transfection agent, some of them exerted certain reduction of gene expression. Double-tailed permethylated glucose conjugated to siRNA through a long spacer inhibited gene expression up to 26% compared to the scrambled duplex. Such modifications contribute positively to the stability of oligoribonucleotides against 5′-exonuclease degradation.  相似文献   

7.
Direct labeling of proteins with radionuclides of iodine will continue to be the method of choice to answer questions addressed in many future studies. However, it seems likely that a increasing number of applications of radiohalogenated proteins will require, or benefit from, conjugate labeling. While many radiohalogen conjugates have been studied, a large proportion of them have only undergone preliminary studies to date, leaving a question of their overall utility. Phenolic conjugates give good radioiodination labeling yields, but mixtures of radiohalogenated products and problems with in vivo stability can be expected. This fact, along with the fact that phenolic compounds do not have a general application to radiohalogens, makes them less attractive than other alternatives. Radiohalogen labeling through the use of organometallic intermediates has proven to be facile, resulting in high yields of high specific activity labeled small-molecule conjugates. Although the choice of which organometallic intermediate to use may depend somewhat on the radionuclide employed, arylstannanes appear to have the most general applicability. Fluorine-18 labeling of small-molecule conjugates has been best accomplished by ipso aromatic nucleophilic substitution (exchange) reactions. Radiohalogenated small molecules have been prepared which can be conjugated with specific functional groups (e.g. amines, sulfhydryl groups, and carbohydrates) or conjugated nonspecifically with groups in the proximity of the conjugate when it is photolyzed. On the basis of previous studies, good conjugation yields (i.e. 60-90%) can be expected for reactions with specific groups, whereas low yields (i.e. 1-5%) can be expected for conjugations with reactive nitrenes and carbenes. However, recent developments in the chemistry of conjugates that produce nitrenes and carbenes will likely improve the radiolabeling yields. There have been too few comparative studies to readily assess which is the best approach to take when beginning a study involving radiohalogenation of a protein or peptide. However, it is clear that radiohalogenated conjugates of proteins can offer an advantage over direct labeling in that conjugates may be designed which provide some control over in vivo stability and secondary distribution of metabolites. Conjugates can be prepared which are designed to utilize in vivo biochemical processes to release a radiohalogenated small molecule from a tissue (i.e. kidney or liver) or retain the radioactivity at the target tissue (e.g. tumor). Aside from the designing of conjugates with linking molecules for desired biological effects, the ultimate future goal for the radiolabeling chemical should be to prepare protein conjugates which can be radiohalogenated in a single one-step procedure.  相似文献   

8.
Carbohydrates present on cell surfaces participate in numerous biological recognition phenomena including cell–cell interactions, cancer metastasis and pathogen invasion. Therefore, synthetic carbohydrates have a potential to act as pharmaceutical substances for treatment of various pathological phenomena by inhibiting specifically the interaction between cell surface carbohydrates and their protein receptors (lectins). However, the inherently low affinity of carbohydrate-protein interactions has often been an obstacle for successful generation of carbohydrate based pharmaceuticals. Multivalent glycoconjugates, i.e. structures carrying several copies of the active carbohydrate sequence in a carrier molecule, have been constructed to overcome this problem. Here we present two novel types of multivalent carbohydrate conjugates based on chondroitin oligomer and cyclodextrin carriers. These carriers were modified to express primary amino groups, and oligosaccharides were then bound to carrier molecules by reductive amination. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT, and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc.  相似文献   

9.
A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated protein was conjugated with glutathione, the conjugation ratio determined by acid hydrolysis, and amino acid analysis performed with quantification of carboxymethyl cysteine. Elution of conjugates from the resin by a salt gradient revealed considerable heterogeneity in the degree of derivatization, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings, and the ability to release conjugates from the solid phase under mild conditions.  相似文献   

10.
Fractionation abilities of polyacrylamide-agarose gel (Ultrogel) and dextran gel (Sephadex) column chromatography were compared in isolating horseradish peroxidase conjugates, prepared using two different methods. Utrogel AcA-44 provides an efficient separation of monomer conjugated and nonconjugated immunoglobulins resulting from the two-step glutaraldehyde procedure, Sephadex G-200 does not. Both types of columns eluted the polymer conjugates resulting from the periodate procedure in the void volume; these were hardly isolated from the small amount of monomer conjugate. Unreacted horseradish peroxidase, present in very low quantities after the efficient periodate method and in large amounts after the glutaraldehyde procedure, was separated by both gel types.  相似文献   

11.
To develop technetium and rhenium-labeled imaging agents for estrogen receptor (ER) positive breast tumors, we have prepared tridentate metal tricarbonyl chelates substituted at the 7alpha- and 17alpha-positions of estradiol. Some of the Re(CO)(3) conjugates have high binding for the ER in vitro. The in vivo biodistribution of the highest affinity of these novel metal tricarbonyl conjugates, prepared as the (94m)Tc labeled analogue, was evaluated by tissue dissection and microPET imaging. Although target tissue-selective uptake was not apparent, it is notable that microPET imaging identified the stomach as a major site of activity deposition, a site that might have been missed by standard tissue distribution studies.  相似文献   

12.
Carbohydrate-protein interactions play important biological roles in biological processes. But there is a lack of high-throughput methods to elucidate recognition events between carbohydrates and proteins. This paper reported a convenient and efficient method for preparing oligosaccharide microarrays, wherein the underivatized oligosaccharide probes were efficiently immobilized on aminooxyacetyl functionalized glass surface by formation of oxime bonding with the carbonyl group at the reducing end of the suitable carbohydrates via irreversible condensation. Prototypes of carbohydrate microarrays containing 10 oligosaccharides were fabricated on aminooxyacetyl functionalized glass by robotic arrayer. Utilization of the prepared carbohydrate microarrays for the characterization of carbohydrate-protein interaction reveals that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. The limit of detection (LOD) for lectin ConA on the fabricated carbohydrate microarrays was determined to be approximately 0.008 microg/mL. Inhibition experiment with soluble carbohydrates also demonstrated that the binding affinities of lectins to different carbohydrates could be analyzed quantitatively by determining IC(50) values of the soluble carbohydrates with the carbohydrate microarrays. This work provides a simple procedure to prepare carbohydrate microarray for high-throughput parallel characterization of carbohydrate-protein interaction.  相似文献   

13.
The 3′-peptidyl-tRNA conjugates that possess a hydrolysis-resistant ribose-3′-amide linkage instead of the natural ester linkage would represent valuable substrates for ribosomal studies. Up to date, access to these derivatives is severely limited. Here, we present a novel approach for the reliable synthesis of non-hydrolyzable 3′-peptidyl-tRNAs that contain all the respective genuine nucleoside modifications. In short, the approach is based on tRNAs from natural sources that are site-specifically cleaved within the TΨC loop by using DNA enzymes to obtain defined tRNA 5′-fragments carrying the modifications. After dephosphorylation of the 2′,3′-cyclophosphate moieties from these fragments, they are ligated to the respective 3′-peptidylamino-tRNA termini that were prepared following the lines of a recently reported solid-phase synthesis. By this novel concept, non-hydrolyzable 3′-peptidyl-tRNA conjugates possessing all natural nucleoside modifications are accessible in highly efficient manner.  相似文献   

14.
During replication and recombination, two DNA duplexes lie side by side. We have developed reagents that might be used to probe structure during these critical processes; they contain two intercalating groups connected by a rigid linker that forces those groups to point in opposite directions. If their stereochemistry proves appropriate, such structure-specific agents should intercalate specifically into adjacent duplexes in the Y- and X-shaped structures (i.e. 3- and 4-way junctions, now known as 3H and 4H junctions) found at replication and recombination sites. We prepared DNA structures in which four duplexes were arranged in all possible combinations around 2- and 4-way junctions and then probed the accessibility to DNase I of all their phosphodiester bonds. In the absence of any bis-intercalators, 7-9 nucleotides (nt) in each of the strands in 4-way junctions were protected from attack; protected regions were significantly offset to the 3' side of the junction in continuous strands, but only slightly offset, if at all, in exchanging strands. All the intercalators decreased accessibility throughout the structure, but none did so at specific points in the two adjacent arms of 4-way junctions. However, one bis-intercalator--but not its sister with a shorter linker--strikingly increased access to a particular CpT bond that lay 9 nt away from the centre of some 4-way junctions without reducing access to neighbouring bonds. Binding was both sequence and structure specific, and depended on complementary stereochemistry between bis-intercalator and junction.  相似文献   

15.
An efficient total stepwise solid-phase synthesis of oligonucleotide-peptide conjugates on a macroporous polystyrene is described. Extending our homoserine linker approach, we prepared a range of fluorescein-labelled conjugates containing one of two different peptides together with oligonucleotides containing 2'-deoxynucleoside or 2'-O-methylribonucleoside phosphodiesters, or gapmers containing 2'-deoxyphosphorothioate sequences flanked by 2'-O-methyl wings.  相似文献   

16.
Folate conjugates (PNIPAM-NH-FA) of a copolymer of N-isopropylacrylamide (NIPAM) and amino-N'-ethylenedioxy-bis(ethylacrylamide) were prepared by an efficient synthesis leading to random grafting, via a short dioxyethylene spacer, of approximately 7 folic acid residues per macromolecule. The chemical composition of the copolymer was characterized by (1)H NMR and UV/vis spectroscopy. A fluorophore-labeled folate PNIPAM conjugate was tested by in vitro assays performed with cultured KB-31 cells overexpressing the folate receptor. The cellular uptake of the copolymer was found to be temperature dependent and was competitively decreased by free folic acid, indicating that the polymer uptake is mediated specifically by the folate receptor. Hydrophobically modified folate conjugates of NIPAM, amino-N'-ethylenedioxy-bis(ethylacrylamide) copolymers, bearing a small number of n-octadecyl groups were prepared following a modified synthetic procedure for use in future studies of FA-targeted liposomes.  相似文献   

17.
Fluorescent microscopy experiments show that when 2'-O-methyl-modified molecular beacons (MBs) are introduced into NIH/3T3 cells, they elicit a nonspecific signal in the nucleus. This false-positive signal can be avoided by conjugating MBs to macromolecules (e.g. NeutrAvidin) that prevent nuclear sequestration, but the presence of a macromolecule makes efficient cytosolic delivery of these probes challenging. In this study, we explored various methods including TAT peptide, Streptolysin O and microporation for delivering NeutrAvidin-conjugates into the cytosol of living cells. Surprisingly, all of these strategies led to entrapment of the conjugates within lysosomes within 24 h. When the conjugates were pegylated, to help prevent intracellular recognition, only microporation led to a uniform cytosolic distribution. Microporation also yielded a transfection efficiency of 93% and an average viability of 86%. When cells microporated with MB-NeutrAvidin conjugates were examined via flow cytometry, the signal-to-background was found to be more than 3 times higher and the sensitivity nearly five times higher than unconjugated MBs. Overall, the present study introduces an improved methodology for the high-throughput detection of RNA at the single cell level.  相似文献   

18.
《Analytical biochemistry》1987,165(2):349-355
A conjugate of a neoglycoprotein (chemically lactosylated bovine serum albumin) and an enzyme (horseradish peroxidase) has been prepared in solution using a heterobifunctional reagent, N-succinimidyl-3-(2-pyridyldithio)propionate, and has been purified by gel filtration on an Ultrogel AcA-44 column. To preclude any carbohydrate-dependent binding to the sugar residues on the glycoprotein peroxidase, the enzyme has to be treated with sodium periodate and sodium cyanoborohydride prior to coupling, which results in oxidative cleavage of the carbohydrates and reduction of the aldehydes thus formed to primary alcohols. Lactosylated bovine serum albumin-peroxidase conjugate has been employed to detect plastic-bound Ricinus communis agglutinin with dependence of the concentration of the lectin and with dependence of the presence of specific inhibitors. Enzyme-labeled conjugates with unmodified bovine serum albumin are completely ineffective in this assay. Localization of β-galactoside-specific sugar receptors in connective tissue is used to demonstrate the feasibility of application of such neoglycoprotein-enzyme conjugates in histochemistry with a minimum number of steps.  相似文献   

19.
Sialyl Lewis X and its derivatives are cell-surface carbohydrates that are involved in cell-cell recognition by carbohydrate-mediated interactions. Unfortunately, owing to the similarities between carbohydrates only a limited number of tools are available for their differentiation. In this study, we prepared a selected phage-displayed peptide library against LeX (2), SLN (3), or LN (4), which compared to sLeX (1) lack sialic acid, fucose, and both sialic acid and fucose from constituents, respectively. Sequences of the selected peptides, prepared as tentacle type dimeric peptides, were prepared and shown to have micromolar affinities for the cognate carbohydrates. The specificities displayed by these 'artificial' lectins overwhelm those of natural lectins. These results suggest that they can serve as useful tools to detect changes in the terminal monosaccharide of cell-surface carbohydrates.  相似文献   

20.
Nucleolar targeting peptides (NrTPs), a recently developed family of cell-penetrating peptides, have been shown to be very efficient in entering cells and accumulating in their nucleoli. In this work, we have used conjugates of NrTP6 (YKQSHKKGGKKGSG) covalently linked to β-galactosidase in order to demonstrate the capacity of NrTP for intracellular delivery of large molecules. NrTP6/β-galactosidase conjugates, prepared by maleimide-based chemistry, were stable and enzymatically active on the standard 4-methylumbelliferyl β-d-galactopyranoside substrate. Their translocation into HeLa cells, monitored by β-galactosidase activity as a readout of the uptake, showed efficient cellular entry and thus demonstrated the potential of NrTPs for intracellular delivery of large-size cargos with preservation of biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号