首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CFLAR/c-FLIPL     
Necroptosis, a caspase-independent, receptor (TNFRSF)-interacting serine-threonine kinase 1 (RIPK1)/RIPK3-dependent necrotic cell death, occurs in cells when apoptosis is blocked. A high level of macroautophagy (herein referred to as autophagy) is usually detected in necroptotic cells, although it is still controversial as to whether excessive autophagy leads to cell death or is cytoprotective. In a recently published paper, we show that the anti-apoptotic protein CFLAR (CASP8 and FADD-like apoptosis regulator) long isoform (CFLARL) plays a critical role in all three fundamental intracellular processes: autophagy, necroptosis, and apoptosis in T lymphocytes. CFLARL-deficient T cells suffer from severe cell death upon T cell receptor stimulation, in which both apoptosis and necroptosis are involved. Autophagy is enhanced in both naïve and activated CFLARL-deficient T cells and plays a cytoprotective function. Here, we summarize our findings and discuss the future direction in the study of the interplay of autophagy, apoptosis and necroptosis in T lymphocytes.  相似文献   

2.
Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo. It was shown to induce apoptosis via a direct effect on mitochondria. This is largely independent of proapoptotic BAK and BAX, but can be inhibited by cyclosporin A (CsA), an inhibitor of the permeability transition (PT) pore. Here we show that blocking apoptosis with general caspase inhibitors did not prevent cell death, indicating that alternative, caspase-independent cell death pathways were activated. BetA did not induce necroptosis, but we observed a strong induction of autophagy in several cancer cell lines. Autophagy was functional as shown by enhanced flux and degradation of long-lived proteins. BetA-induced autophagy could be blocked, just like apoptosis, with CsA, suggesting that autophagy is activated as a response to the mitochondrial damage inflicted by BetA. As both a survival and cell death role have been attributed to autophagy, autophagy-deficient tumor cells and mouse embryo fibroblasts were analyzed to determine the role of autophagy in BetA-induced cell death. This clearly established BetA-induced autophagy as a survival mechanism and indicates that BetA utilizes an as yet-undefined mechanism to kill cancer cells.  相似文献   

3.
Obatoclax (GX15-070), a small-molecule inhibitor of antiapoptotic Bcl-2 proteins, has been reported to trigger cell death via autophagy. However, the underlying molecular mechanisms have remained elusive. Here, we identify GX15-070-stimulated assembly of the necrosome on autophagosomal membranes as a key event that connects GX15-070-stimulated autophagy to necroptosis. GX15-070 predominately induces a non-apoptotic form of cell death in rhabdomyosarcoma cells, as evident by lack of typical apoptotic features such as DNA fragmentation or caspase activation and by insensitivity to the broad-range caspase inhibitor zVAD.fmk. Instead, GX15-070 triggers massive accumulation of autophagosomes, which are required for GX15-070-induced cell death, as blockade of autophagosome formation by silencing of Atg5 or Atg7 abolishes GX15-070-mediated cell death. Co-immunoprecipitation studies reveal that GX15-070 stimulates the interaction of Atg5, a constituent of autophagosomal membranes, with components of the necrosome such as FADD, RIP1 and RIP3. This GX15-070-induced assembly of the necrosome on autophagosomes occurs in a Atg5-dependent manner, as knockdown of Atg5 abrogates formation of this complex. RIP1 is necessary for GX15-070-induced cell death, as both genetic and pharmacological inhibition of RIP1 by shRNA-mediated knockdown or by the RIP1 inhibitor necrostatin-1 blocks GX15-070-induced cell death. Similarly, RIP3 knockdown rescues GX15-070-mediated cell death and suppression of clonogenic survival. Interestingly, RIP1 or RIP3 silencing has no effect on GX15-070-stimulated autophagosome formation, underlining that RIP1 and RIP3 mediate cell death downstream of autophagy induction. Of note, GX15-070 significantly suppresses tumor growth in a RIP1-dependent manner in the chorioallantoic membrane model in vivo. In conclusion, GX15-070 triggers necroptosis by promoting the assembly of the necrosome on autophagosomes. These findings provide novel insights into the molecular mechanisms of GX15-070-induced non-apoptotic cell death.  相似文献   

4.
Melanoma as the most major skin malignancy has attracted much attention, so far. Although a successful therapeutic strategy requires an accurate understanding of the precise mechanisms for the initiation and progression of the melanoma. Several types of cell death mechanisms have recently been identified along with conventional cell death mechanisms such as apoptosis and necrosis. Among those mechanisms, necroptosis, anoikis, ferroptosis, and autophagy may be considered to have remarkable modulatory impacts on melanoma. In the present review, we explain the mechanisms of cell death signaling pathways related to autophagy, ferroptosis, anoikis, necroptosis, and reticulum endoplasmic stress in cells and describe how those mechanisms transduce signals in melanoma cells. Meanwhile, we describe how we can modulate those mechanisms to eliminate melanoma.  相似文献   

5.
Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.  相似文献   

6.
Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.  相似文献   

7.
Zhang T  Li Y  Park KA  Byun HS  Won M  Jeon J  Lee Y  Seok JH  Choi SW  Lee SH  Man Kim J  Lee JH  Son CG  Lee ZW  Shen HM  Hur GM 《Autophagy》2012,8(4):559-576
Targeted disruption of STAT3 function has proven to be a useful cancer therapeutic approach by inducing apoptotic cell death. Cucurbitacin is currently under development as a small molecule of STAT3 inhibitor to trigger cell death in many cancers. Here, we systematically studied the molecular mechanisms underlying cucurbitacin-induced cell death, in particular the involvement of autophagy. Treatment with cucurbitacin resulted in non-apoptotic cell death in a caspase-independent manner. Notably, cucurbitacin enhanced excessive conversion of lipidated LC3 (LC3-II) and accumulation of autophagosomes in many cell types. Such autophagy and cell death induced by cucurbitacin were independent of its ability to inhibit STAT3 function, but mainly mediated by enhanced production of mitochondrial-derived reactive oxygen species (ROS), and subsequently activation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK). Interestingly, both the autophagy inhibitor wortmannin and knockdown of Atg5 or Beclin 1 failed to rescue the cells from cucurbitacin-induced cell death, as suppression of autophagy induced the mode of cell death to shift from autophagic cell death to caspase-dependent apoptosis. Thus the present study provides new insights into the molecular mechanisms underlying cucurbitacin-mediated cell death and supports cucurbitacin as a potential anti-cancer drug through modulating the balance between autophagic and apoptotic modes of cell death.  相似文献   

8.
《Autophagy》2013,9(4):559-576
Targeted disruption of STAT3 function has proven to be a useful cancer therapeutic approach by inducing apoptotic cell death. Cucurbitacin is currently under development as a small molecule of STAT3 inhibitor to trigger cell death in many cancers. Here, we systematically studied the molecular mechanisms underlying cucurbitacin-induced cell death, in particular the involvement of autophagy. Treatment with cucurbitacin resulted in non-apoptotic cell death in a caspase-independent manner. Notably, cucurbitacin enhanced excessive conversion of lipidated LC3 (LC3-II) and accumulation of autophagosomes in many cell types. Such autophagy and cell death induced by cucurbitacin were independent of its ability to inhibit STAT3 function, but mainly mediated by enhanced production of mitochondrial-derived reactive oxygen species (ROS), and subsequently activation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK). Interestingly, both the autophagy inhibitor wortmannin and knockdown of Atg5 or Beclin 1 failed to rescue the cells from cucurbitacin-induced cell death, as suppression of autophagy induced the mode of cell death to shift from autophagic cell death to caspase-dependent apoptosis. Thus the present study provides new insights into the molecular mechanisms underlying cucurbitacin-mediated cell death and supports cucurbitacin as a potential anti-cancer drug through modulating the balance between autophagic and apoptotic modes of cell death.  相似文献   

9.
Autophagy, an evolutionarily-conserved intracellular organelle and protein degradation process, may exhibit drastically different effects on cell survival depending on the particular environmental and culturing conditions. Hoechst 33342 (HO), a fluorescent dye widely used for staining DNA, has been reported to induce apoptosis in mammalian cells. Here we showed that, in addition to caspase-independent cell death, HO also induced autophagy in HeLa cells, as evidenced by the accumulation of autophagosomes, LC3 form conversion and LC3 puncta formation in a cell line stably expressing GFP-LC3. HO treatment led to generation of reactive oxygen species (ROS), and inhibition of ROS with N-acetyl-l-cysteine (NAC) abrogated both autophagy and caspase-independent cell death. Finally, autophagy played a protective role against caspase-independent cell death, as cell death induced by HO was enhanced under pharmacological and siRNA-mediated genetic inhibition of autophagy.  相似文献   

10.
《Free radical research》2013,47(6):740-749
Abstract

Autophagy, an evolutionarily-conserved intracellular organelle and protein degradation process, may exhibit drastically different effects on cell survival depending on the particular environmental and culturing conditions. Hoechst 33342 (HO), a fluorescent dye widely used for staining DNA, has been reported to induce apoptosis in mammalian cells. Here we showed that, in addition to caspase-independent cell death, HO also induced autophagy in HeLa cells, as evidenced by the accumulation of autophagosomes, LC3 form conversion and LC3 puncta formation in a cell line stably expressing GFP-LC3. HO treatment led to generation of reactive oxygen species (ROS), and inhibition of ROS with N-acetyl-l-cysteine (NAC) abrogated both autophagy and caspase-independent cell death. Finally, autophagy played a protective role against caspase-independent cell death, as cell death induced by HO was enhanced under pharmacological and siRNA-mediated genetic inhibition of autophagy.  相似文献   

11.
12.
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.  相似文献   

13.
Jiang Q  Li F  Shi K  Yang Y  Xu C 《BMB reports》2012,45(3):194-199
Autophagy has been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy of cells under stress. From our previous findings that supranutritional doses of sodium selenite induced apoptosis in human leukemia cells, now we show autophagic cell death occurred after selenite exposure in HL60, suggested an alternative mechanism for the potential therapeutic properties of selenite. Additionally, Death-associated Protein Kinase (DAPK) performed a significantly increased expression during this process, concomitantly with gradually decreased phosphorylation at Ser(308). We further reveal that the up-regulation of DAPK which depends on selenite-activated ERK had no effect on autophagy. However, activation of DAPK via PP2A-mediated dephosphorylation at Ser(308) serves as a new strategy for autophagy induction. In conclusion, these results indicate that PP2A-mediated activated DAPK sensitizes HL60 cells to selenite, ultimately triggers autophagic cell death pathway to commit cell demise. [BMB reports 2012; 45(3): 194-199].  相似文献   

14.
Alkylating DNA-damage agents such as N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG) trigger necroptosis, a newly defined form of programmed cell death (PCD) managed by receptor interacting protein kinases. This caspase-independent mode of cell death involves the sequential activation of poly(ADP-ribose) polymerase-1 (PARP-1), calpains, BAX and AIF, which redistributes from mitochondria to the nucleus to promote chromatinolysis. We have previously demonstrated that the BAX-mediated mitochondrial release of AIF is a critical step in MNNG-mediated necroptosis. However, the mechanism regulating BAX activation in this PCD is poorly understood. Employing mouse embryonic knockout cells, we reveal that BID controls BAX activation in AIF-mediated necroptosis. Indeed, BID is a link between calpains and BAX in this mode of cell death. Therefore, even if PARP-1 and calpains are activated after MNNG treatment, BID genetic ablation abolishes both BAX activation and necroptosis. These PCD defects are reversed by reintroducing the BID-wt cDNA into the BID(-/-) cells. We also demonstrate that, after MNNG treatment, BID is directly processed into tBID by calpains. In this way, calpain non-cleavable BID proteins (BID-G70A or BID-Δ68-71) are unable to promote BAX activation and necroptosis. Once processed, tBID localizes in the mitochondria of MNNG-treated cells, where it can facilitate BAX activation and PCD. Altogether, our data reveal that, as in caspase-dependent apoptosis, BH3-only proteins are key regulators of caspase-independent necroptosis.  相似文献   

15.
Caspase 8 plays a dual role in the survival of T lymphocytes. Although active caspase 8 mediates apoptosis upon death receptor signaling, the loss of caspase 8 activity leads to receptor-interacting protein (RIP)-1/RIP-3-dependent necrotic cell death (necroptosis) upon TCR activation. The anti-apoptotic protein c-FLIP (cellular caspase 8 (FLICE)-like inhibitory protein) suppresses death receptor-induced caspase 8 activation. Moreover, recent findings suggest that c-FLIP is also involved in inhibiting necroptosis and autophagy. It remains unclear whether c-FLIP protects primary T lymphocytes from necroptosis or regulates the threshold at which autophagy occurs. Here, we used a c-FLIP isoform-specific conditional deletion model to show that c-FLIPL-deficient T cells underwent RIP-1-dependent necroptosis upon TCR stimulation. Interestingly, although previous studies have only described necroptosis in the absence of caspase 8 activity, we found that pro-apoptotic caspase 8 activity and apoptosis were also enhanced in c-FLIPL-deficient T lymphocytes. Furthermore, c-FLIPL-deficient T cells exhibited enhanced autophagy, which served a cytoprotective function. Together, these findings indicate that c-FLIPL plays an important antinecroptotic role and is a key regulator of apoptosis, autophagy, and necroptosis in T lymphocytes.  相似文献   

16.
Necroptosis is a form of caspase-independent programmed cell death that arises from disruption of cell membranes by the mixed lineage kinase domain-like (MLKL) pseudokinase after its activation by the upstream kinases, receptor interacting protein kinase (RIPK)-1 and RIPK3, within a complex known as the necrosome. Dysregulated necroptosis has been implicated in numerous inflammatory pathologies. As such, new small molecule necroptosis inhibitors are of great interest, particularly ones that operate downstream of MLKL activation, where the pathway is less well defined. To better understand the mechanisms involved in necroptosis downstream of MLKL activation, and potentially uncover new targets for inhibition, we screened known kinase inhibitors against an activated mouse MLKL mutant, leading us to identify the lymphocyte-specific protein tyrosine kinase (Lck) inhibitor AMG-47a as an inhibitor of necroptosis. We show that AMG-47a interacts with both RIPK1 and RIPK3, that its ability to protect from cell death is dependent on the strength of the necroptotic stimulus, and that it blocks necroptosis most effectively in human cells. Moreover, in human cell lines, we demonstrate that AMG-47a can protect against cell death caused by forced dimerisation of MLKL truncation mutants in the absence of any upstream signalling, validating that it targets a process downstream of MLKL activation. Surprisingly, however, we also found that the cell death driven by activated MLKL in this model was completely dependent on the presence of RIPK1, and to a lesser extent RIPK3, although it was not affected by known inhibitors of these kinases. Together, these results suggest an additional role for RIPK1, or the necrosome, in mediating human necroptosis after MLKL is phosphorylated by RIPK3 and provide further insight into reported differences in the progression of necroptosis between mouse and human cells.Subject terms: Kinases, Necroptosis  相似文献   

17.
The exposure of phosphatidylserine (PS) on the outer plasma membrane has long been considered a unique feature of apoptotic cells. Together with other “eat me” signals, it enables the recognition and phagocytosis of dying cells (efferocytosis), helping to explain the immunologically-silent nature of apoptosis. Recently, however, PS exposure has also been reported in non-apoptotic forms of regulated inflammatory cell death, such as necroptosis, challenging previous dogma. In this review, we outline the evidence for PS exposure in non-apoptotic cells and extracellular vesicles (EVs), and discuss possible mechanisms based on our knowledge of apoptotic-PS exposure. In addition, we examine the outcomes of non-apoptotic PS exposure, including the reversibility of cell death, efferocytosis, and consequent inflammation. By examining PS biology, we challenge the established approach of distinguishing apoptosis from other cell death pathways by AnnexinV staining of PS externalization. Finally, we re-evaluate how PS exposure is thought to define apoptosis as an immunologically silent process distinct from other non-apoptotic and inflammatory cell death pathways. Ultimately, we suggest that a complete understanding of how regulated cell death processes affect the immune system is far from being fully elucidated.  相似文献   

18.
In this study, we investigated the ability of curcumin alone or in combination with GLUT1 siRNA to radiosensitize laryngeal carcinoma (LC) through the induction of autophagy. Protein levels in tumour tissues and LC cells were measured by immunohistochemistry and Western blotting. In vitro, cell proliferation, colony formation assays, cell death and autophagy were detected. A nude mouse xenograft model was established through the injection of Tu212 cells. We found that GLUT1 was highly expressed and negatively associated with autophagy-related proteins in LC and that curcumin suppressed radiation-mediated GLUT1 overexpression in Tu212 cells. Treatment with curcumin, GLUT1 siRNA, or the combination of the two promoted autophagy. Inhibition of autophagy using 6-amino-3-methypourine (3-MA) promoted apoptosis after irradiation or treatment of cells with curcumin and GLUT1 siRNA. 3-MA inhibited curcumin and GLUT1 siRNA-mediated non-apoptotic programmed cell death. The combination of curcumin, GLUT1 siRNA and 3-MA provided the strongest sensitization in vivo. We also found that autophagy induction after curcumin or GLUT1 siRNA treatment implicated in the AMP-activated protein kinase-mTOR-serine/threonine-protein kinase-Beclin1 signalling pathway. Irradiation primarily caused apoptosis, and when combined with curcumin and GLUT1 siRNA treatment, the increased radiosensitivity of LC occurred through the concurrent induction of apoptosis and autophagy.  相似文献   

19.
Macrophage cell death plays a role in many physiological and pathophysiological conditions. Previous work has shown that macrophages can undergo caspase-independent cell death, and this process is associated with Nur77 induction, which is involved in inducing chromatin condensation and DNA fragmentation. Here we show that autophagy is a cytosolic event that controls caspase-independent macrophage cell death. Autophagy was induced in macrophages treated with lipopolysaccharides (LPSs) and the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), and the inhibition of autophagy by either chemical inhibitors or by the RNA interference knockdown of beclin (a protein required for autophagic body formation) inhibited caspase-independent macrophage cell death. We also found an increase in poly(ADP-ribose) (PAR) polymerase (PARP) activation and reactive oxygen species (ROS) production in LPS + Z-VAD-treated macrophages, and both are involved in caspase-independent macrophage cell death. We further determined that the formation of autophagic bodies in macrophages occurs downstream of PARP activation, and PARP activation occurs downstream of ROS production. Using macrophages in which receptor-interacting protein 1 (RIP1) was knocked down by small interfering RNA, and macrophages isolated from Toll/interleukin-1 receptor-domain-containing adaptor inducing IFN-beta (TRIF)-deficient mice, we found that TRIF and RIP1 function upstream of ROS production in LPS + Z-VAD-treated macrophages. We also found that Z-VAD inhibits LPS-induced RIP1 cleavage, which may contribute to ROS over-production in macrophages. This paper reveals that TRIF, RIP1, and ROS production, as well as PARP activation, are involved in inducing autophagy, which contributes to caspase-independent macrophage cell death.  相似文献   

20.
Necroptosis is a physiologically relevant mode of cell death with some well-described initiating events, but largely unknown executioners. Here we investigated necrostatin-1 (Nec-1) sensitive death elicited by different necroptosis stimuli in L929 mouse fibrosarcoma cells, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages. We found that TNFα- or zVAD-induced necroptosis occurs independently of the recently implicated executioners Bmf or PARP-2, but can involve the Bcl-2 family proteins Bid and Bak. Furthermore, this type of necroptosis is associated with mitochondrial cytochrome c release and partly sensitive to cyclosporine A inhibition, suggesting a cross talk with the mitochondrial permeability transition pore. Necroptosis triggered by cadmium (Cd) exposure caused fully Nec-1-sensitive and caspase-independent death in L929 cells that was associated with autocrine TNFα-mediated feed-forward signalling. In MEF Cd-exposure elicited a mixed mode of cell death that was to some extent Nec-1-sensitive but also displayed features of apoptosis. It was partly dependent on Bmf and Bax/Bak, proteins typically considered to act pro-apoptotic, but ultimately insensitive to caspase inhibition. Overall, our study indicates that inducers of “extrinsic” and “intrinsic” necroptosis can both trigger TNF-receptor signalling. Further, necroptosis may depend on mitochondrial changes engaging proteins considered critical for MOMP during apoptosis that ultimately contribute to caspase-independent necrotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号