首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The calpain family of Ca2+‐dependent cysteine proteases plays a vital role in many important biological processes which is closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleavage sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental determination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new computational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To overcome the imbalance of negative and positive samples in the machine‐learning training which have been suffered by most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algorithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain proteins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Calpain-1 and -2 are Ca2 +-activated intracellular cysteine proteases that regulate a wide range of cellular functions through the cleavage of their protein substrates. Unlike degradative proteases, calpains make limited, transformative cleavages, typically in accessible sequences linking discrete subdomains, to irreversibly alter substrate functions. The biological roles of calpain and their interplay with calcium signaling are of significant biomedical interest as biomarkers and potential therapeutic targets in a growing number of diseases including Alzheimer's, cancer and fibrosis. Unfortunately, many of the colorimetric and fluorimetric assays that have been developed to study calpain activity suffer from low sensitivity and/or poor calpain specificity. To address the need for a highly sensitive and calpain-specific substrate suitable for in vitro and in vivo calpain activity analysis, we have developed a protein FRET probe. We inserted the optimized calpain cleavage sequence PLFAAR between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) and modulated its flanking sequences for optimal calpain cleavage. We demonstrate greater sensitivity and calpain-specificity of an optimal 16-residue PLFAAR-based FRET substrate compared to a standard α-spectrin-based probe. The 16-residue PLFAAR protein FRET substrate is not significantly cleaved by trypsin, chymotrypsin, cathepsin-L or caspase-3, and is highly sensitive to both calpain-1 and -2. After transfection of the substrate gene into breast cancer cells the PLFAAR protein FRET product was cut in lysed wild-type cells but not in those with a calpain knock-out phenotype. Blockage of substrate cleavage in the lysates by endogenous and exogenous calpastatin was observed, and was overcome by adding extra calpain.  相似文献   

3.
Calpains, the cytoplasmic Ca2+-activated regulatory proteases, have no simple and clearly definable cleavage site specificity, which is in sharp contrast to digestive (e.g., pancreatic) proteases. For calpains, an approximate 10-aa segment having a variety of sequences and spanning the scissile bond, governs proteolytic cleavage. This permissivity is a precondition for calpains to act on several different substrate proteins in the cell. The specificity of calpain action may be ensured by anchoring/targeting proteins. Intriguingly, the established endogenous inhibitor protein, calpastatin, might also serve as a storage site. Furthermore, specificity may be encoded in the 'goodness' of the undecapeptide sequence in substrate proteins. Novel approaches are needed to reveal how calpains find their substrates in cells at the proper time and location.  相似文献   

4.
Calpains are non-lysosomal, Ca 2+ -dependent cysteine proteases, which are ubiquitously distributed across cell types and vertebrate species. The rules that govern calpain specificity have not yet been determined. To elucidate the cleavage pattern of calpains, we carried out calpain-induced proteolytic studies on the insulin-like growth factor binding proteins IGFBP-4 and -5. Proteolysis of IGFBPs is well characterized in numerous reports. Our results show that calpain cleavage sites are in the non-conserved unstructured regions of the IGFBPs. Compilation of the calpain-induced proteolytic cleavage sites in several proteins reported in the literature, together with our present study, has not revealed clear preferences for amino acid sequences. We therefore conclude that calpains seem not to recognize amino acid sequences, but instead cleave with low sequence specificity at unstructured or solvent-exposed fragments that connect folded, stable domains of target proteins.  相似文献   

5.
6.
Neutral thiol proteinases (calpains), activated by calcium are involved in the intracellular turnover of intermediate filaments but the precise position of the cleavage points has remained unknown. Here we identify by direct sequence analysis the major cleavage sites found when murine vimentin is digested by limited proteolysis in vitro with calpain purified from porcine kidney. Contrary to some previous suggestions, no absolute sequence specifity could be detected although 10 specific sites have been identified. This result is in line with the cDNA derived amino-acid sequence of a calpain, which pointed to a similarity of the catalytic site with the active sites in papain, cathepsin and actinidin. However, all major cleavage sites are located within regions of the vimentin molecule, which in current models of intermediate filament structure are thought to be non-helical: the amino-terminal headpiece, the carboxy-terminal tailpiece and the spacer separating the two major coiled-coil domains. The sequence information about the cleavage sites was extended to provide the amino-terminal 119 residues of murine vimentin.  相似文献   

7.
HIV-1 protease has a broad and complex substrate specificity. The discovery of an accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease would greatly expedite the search for inhibitors of HIV protease. During the last two decades, various methods have been developed to explore the specificity of HIV protease cleavage activity. However, because little advancement has been made in the understanding of HIV-1 protease cleavage site specificity, not much progress has been reported in either extracting effective methods or maintaining high prediction accuracy. In this article, a theoretical framework is developed, based on the kernel method for dimensionality reduction and prediction for HIV-1 protease cleavage site specificity. A nonlinear dimensionality reduction kernel method, based on manifold learning, is proposed to reduce the high dimensions of protease specificity. A support vector machine is applied to predict the protease cleavage. Superior performance in comparison to that previously published in literature is obtained using numerical simulations showing that the basic specificities of the HIV-1 protease are maintained in reduction feature space, and by combining the nonlinear dimensionality reduction algorithm with a support vector machine classifier.  相似文献   

8.
The calpain family of calcium‐dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene‐knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin‐overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α‐spectrin, collapsin response mediator protein‐2, and voltage‐gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain‐mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in traumatic brain injury and neurodegenerative disorders.  相似文献   

9.

Background

Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.

Methodology/Principal Finding

To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.

Conclusions

Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.  相似文献   

10.
Liu Z  Cao J  Gao X  Ma Q  Ren J  Xue Y 《PloS one》2011,6(4):e19001
As one of the most essential post-translational modifications (PTMs) of proteins, proteolysis, especially calpain-mediated cleavage, plays an important role in many biological processes, including cell death/apoptosis, cytoskeletal remodeling, and the cell cycle. Experimental identification of calpain targets with bona fide cleavage sites is fundamental for dissecting the molecular mechanisms and biological roles of calpain cleavage. In contrast to time-consuming and labor-intensive experimental approaches, computational prediction of calpain cleavage sites might more cheaply and readily provide useful information for further experimental investigation. In this work, we constructed a novel software package of GPS-CCD (Calpain Cleavage Detector) for the prediction of calpain cleavage sites, with an accuracy of 89.98%, sensitivity of 60.87% and specificity of 90.07%. With this software, we annotated potential calpain cleavage sites for hundreds of calpain substrates, for which the exact cleavage sites had not been previously determined. In this regard, GPS-CCD 1.0 is considered to be a useful tool for experimentalists. The online service and local packages of GPS-CCD 1.0 were implemented in JAVA and are freely available at: http://ccd.biocuckoo.org/.  相似文献   

11.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

12.
Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, meprin α, meprin β, and LAST_MAM proteases exhibit a strong preference for aspartate in the peptide (P)1' position because of a conserved positively charged residue in the active cleft subsite (S)1'. This unparalleled specificity has not been found for other families of extracellular proteases. Interestingly, cleavage specificity is also strongly influenced by proline in P2' or P3' leading to a rare example of subsite cooperativity. This specificity characterizes the astacins as unique contributors to extracellular proteolysis that is corroborated by known cleavage sites in procollagen I+III, VEGF (vascular endothelial growth factor)-A, IL (interleukin)-1β, and pro-kallikrein 7. Indeed, cleavage sites in VEGF-A and pro-kallikrein 7 identified by terminal amine isotopic labeling of substrates matched those reported by Edman degradation. Moreover, the novel substrate FGF-19 was validated biochemically and shown to exhibit altered biological activity after meprin processing.  相似文献   

13.
Calpains are proteases that catalyze the limited cleavage of target proteins in response to Ca(2+) signaling. Because of their involvement in pathological conditions such as post-ischemic injury and Alzheimer and Parkinson disease, calpains form a class of pharmacologically significant targets for inhibition. We have determined the sequence preference for the hydrolysis of peptide substrates of the ubiquitous mu-calpain isoform by a peptide library-based approach using the proteolytic core of mu-calpain (muI-II). The approach, first described by Turk et al. (Turk, B. E., Huang, L. L., Piro, E. T., and Cantley, L. C. (2001) Nat. Biotechnol. 19, 661-667), involved the digestion of an N-terminally acetylated degenerate peptide library in conjunction with Edman sequencing to determine the specificity for residues found at primed positions. The cleavage consensus for these positions was then used to design a second, partially degenerate library, to determine specificity at unprimed positions. We have improved upon the original methodology by using a degenerate peptide dendrimer for determination of specificity at unprimed positions. By using this modified approach, the complete cleavage specificity profile for muI-II was determined for all positions flanking the cleaved peptide. A previously known preference of calpains for hydrophobic amino acids at unprimed positions was confirmed. In addition, a novel residue specificity for primed positions was revealed to highlight the importance of these sites for substrate recognition. The optimal primed site motif (MER) was shown to be capable of directing cleavage to a specific peptide bond. Accordingly, we designed a fluorescent resonance energy transfer-based substrate with optimal cleavage motifs on the primed and non-primed sides (PLFAER). The mu-calpain core shows a far greater turnover rate for our substrate than for those based on the cleavage site of alpha-spectrin or the proteolytic sequence consensus compiled from substrate alignments.  相似文献   

14.
The structural clues of substrate recognition by calpain are incompletely understood. In this study, 106 cleavage sites in substrate proteins compiled from the literature have been analyzed to dissect the signal for calpain cleavage and also to enable the design of an ideal calpain substrate and interfere with calpain action via site-directed mutagenesis. In general, our data underline the importance of the primary structure of the substrate around the scissile bond in the recognition process. Significant amino acid preferences were found to extend over 11 residues around the scissile bond, from P(4) to P(7)'. In compliance with earlier data, preferred residues in the P(2) position are Leu, Thr, and Val, and in P(1) Lys, Tyr, and Arg. In position P(1) ', small hydrophilic residues, Ser and to a lesser extent Thr and Ala, occur most often. Pro dominates the region flanking the P(2)-P(1)' segment, i.e. positions P(3) and P(2)'-P(4)'; most notable is its occurrence 5.59 times above chance in P(3)'. Intriguingly, the segment C-terminal to the cleavage site resembles the consensus inhibitory region of calpastatin, the specific inhibitor of the enzyme. Further, the position of the scissile bond correlates with certain sequential attributes, such as secondary structure and PEST score, which, along with the amino acid preferences, suggests that calpain cleaves within rather disordered segments of proteins. The amino acid preferences were confirmed by site-directed mutagenesis of the autolysis sites of Drosophila calpain B; when amino acids at key positions were changed to less preferred ones, autolytic cleavage shifted to other, adjacent sites. Based on these preferences, a new fluorogenic calpain substrate, DABCYLTPLKSPPPSPR-EDANS, was designed and synthesized. In the case of micro- and m-calpain, this substrate is kinetically superior to commercially available ones, and it can be used for the in vivo assessment of the activity of these ubiquitous mammalian calpains.  相似文献   

15.
Homogeneous porcine calpain (Ca2+-dependent cysteine proteinase) was found to hydrolyze a variety of peptides and synthetic substrates. Leu-Trp-Met-Arg-Phe-Ala, eledoisin-related peptide, alpha-neoendorphin, angiotensin I, luteinizing hormone-releasing hormone, neurotensin, dynorphin, glucagon, and oxidized insulin B chain were cleaved with a general preference for a Tyr, Met, or Arg residue in the P1 position preceded by a Leu or Val residue in the P2 position. No great difference in specificity was found between low-Ca2+-requiring calpain I and high-Ca2+-requiring calpain II. 4-Methylcoumaryl-7-amide (MCA) derivatives having a Leu(or Val)-Met(or Tyr)-MCA or a Leu-Lys-MCA sequence were also cleaved by either calpain I or calpain II with preference for Leu over Val by a factor of 9 to 16. Calpains I and II showed similar but not identical kinetic behavior for individual substrates. The Km and kcat values ranged from 0.23 to 7.08 mM and 0.062 to 0.805 s-1 for the calpains, while kcat/Km values for the calpains were only 1/433 to 1/5 of those for papain with a given substrate. With succinyl-Leu-Met(or Tyr)-MCA, calpains I and II were half-maximally activated at 12 and 260 microM Ca2+, respectively, and competitively inhibited by leupeptin (Ki = 0.32 microM for I and 0.43 microM for II) or antipain (Ki = 1.41 microM for I and 1.45 microM for II). Thus, this is the first report describing the specificity and kinetics of calpains I and II.  相似文献   

16.
Calpains are a large family of Ca2+-dependent cysteine proteases that are ubiquitously distributed across most cell types and vertebrate species. Calpains play a role in cell differentiation, apoptosis, cytoskeletal remodeling, signal transduction and the cell cycle. The cell cycle proteins cyclin D1 and p21(KIP1), for example, have been shown to be affected by calpains. However, the rules that govern calpain cleavage specificity are poorly understood. We report here studies on the pattern of mu-calpain proteolysis of the p19(INK4d) protein, a cyclin-dependent kinase 4/6 inhibitor that negatively regulates the mammalian cell cycle. Our data show new characteristics of calpain action: mu-calpain cleaves p19(INK4d) immediately after the first and second ankyrin repeats that are structurally less stable compared to the other repeats. This is in contrast to features observed so far in the specificity of calpains for their substrates. These results imply that calpain may be involved in the cell cycle by regulating the cell cycle regulatory protein turnover through CDK inhibitors and cyclins.  相似文献   

17.
The relative contributions of apoptosis and necrosis in brain injury have been a matter of much debate. Caspase-3 has been identified as a key protease in the execution of apoptosis, whereas calpains have mainly been implicated in excitotoxic neuronal injury. In a model of unilateral hypoxia-ischemia in 7-day-old rats, caspase-3-like activity increased 16-fold 24 h postinsult, coinciding with cleavage of the caspase-3 proenzyme and endogenous caspase-3 substrates. This activation was significantly decreased by pharmacological calpain inhibition, using CX295, a calpain inhibitor that did not inhibit purified caspase-3 in vitro. Activation of caspase-3 by m-calpain, but not mu-calpain, was facilitated in a dose-dependent manner in vitro by incubating cytosolic fractions, containing caspase-3 proform, with calpains. This facilitation required the presence of some active caspase-3 and could be abolished by including the specific calpain inhibitor calpastatin. This indicates that initial cleavage of caspase-3 by m-calpain, producing a 29-kDa fragment, facilitates the subsequent cleavage into active forms. This is the first report to our knowledge suggesting a direct link between the early, excitotoxic, calcium-mediated activation of calpain after cerebral hypoxia-ischemia and the subsequent activation of caspase-3, thus representing a tentative pathway of "pathological apoptosis."  相似文献   

18.
The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.  相似文献   

19.
Specific proteolysis of the NR2 subunit at multiple sites by calpain   总被引:4,自引:0,他引:4  
The NMDA subtype of glutamate receptor plays an important role in the molecular mechanisms of learning, memory and excitotoxicity. NMDA receptors are highly permeable to calcium, which can lead to the activation of the calcium-dependent protease, calpain. In the present study, the ability of calpain to modulate NMDA receptor function through direct proteolytic digestion of the individual NMDA receptor subunits was examined. HEK293t cells were cotransfected with the NR1a/2A, NR1a/2B or NR1a/2C receptor combinations. Cellular homogenates of these receptor combinations were prepared and digested by purified calpain I in vitro. All three NR2 subunits could be proteolyzed by calpain I while no actin or NR1a cleavage was observed. Based on immunoblot analysis, calpain cleavage of NR2A, NR2B and NR2C subunits was limited to their C-terminal region. In vitro calpain digestion of fusion protein constructs containing the C-terminal region of NR2A yielded two cleavage sites at amino acids 1279 and 1330. Although it has been suggested that calpain cleavage of the NMDA receptor may act as a negative feedback mechanism, the current findings demonstrated that calpain cleavage did not alter [(125)I]MK801 binding and that receptors truncated to the identified cleavage sites had peak intracellular calcium levels, (45)Ca uptake rates and basal electrophysiological properties similar to wild type.  相似文献   

20.
Calpain-mediated proteolysis regulates cytoskeletal dynamics and is altered during aging and the progression of numerous diseases or pathological conditions. Although several cytoskeletal proteins have been identified as substrates, how localized calpain activity is regulated and the mechanisms controlling substrate recognition are not clear. In this study, we report that phosphoinositide binding regulates the susceptibility of the cytoskeletal adhesion protein alpha-actinin to proteolysis by calpains 1 and 2. At first, alpha-actinin did not appear to be a substrate for calpain 2; however, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) binding to alpha-actinin resulted in nearly complete proteolysis of the full-length protein, producing stable breakdown products. Calpain 1 was able to cleave alpha-actinin in the absence of phosphoinositide binding; however, PtdIns(3,4,5)P(3) binding increased the rate of proteolysis, and phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)) binding significantly inhibited cleavage. Phosphoinositide binding appeared to regulate calpain proteolysis of alpha-actinin by modulating the exposure of a highly sensitive cleavage site within the calponin homology 2 domain. In U87MG glioblastoma cells, which contain elevated levels of PtdIns(3,4,5)P(3), alpha-actinin colocalized with calpain within dynamic actin cytoskeletal structures. Furthermore, proteolysis of alpha-actinin producing stable breakdown products was observed in U87MG cells treated with calcium ionophore to activate the calcium-dependent calpains. Additional evidence of PtdIns(3,4,5)P(3)-mediated calpain proteolysis of alpha-actinin was observed in rat embryonic fibroblasts. These results suggest that PtdIns(3,4,5)P(3) binding is a critical determinant for alpha-actinin proteolysis by calpain. In conclusion, phosphoinositide binding to the substrate is a potential mechanism for regulating susceptibility to proteolysis by calpain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号