首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A protein kinase (ATP: histone phosphotransferase) with high specificity for the phosphorylation of the very lysine-rich histone H1 has been partially purified and characterized from soybean hypocotyl. The enzyme has a molecular weight of about 48,500. Its activity and sedimentation behavior are refractory to cyclic nucleoside monophosphates. No significant amount of cyclic AMP or cyclic GMP binding activity could be detected in the crude or partially purified enzyme preparations. Km for ATP and histone H1 are 0.4 μM and 0.7 μM, respectively. The enzyme requires Mg2+ or Mn2+ for activity, while addition of 0.5 mM Ca2+, Zn2+ or Hg2+ results in 50% inhibition. Arginine-rich histones H3 and H4 are inhibitory to histone H1 phosphorylation; these histones affect the Vmax of the enzyme, but not the Km for histone H1.  相似文献   

2.
We have reconstituted salt-treated SV40 minichromosomes with differentially phosphorylated forms of histone H1 extracted from either G0-, S- or M-phase cells. Sedimentation studies revealed a clear difference between minichromosomes reconstituted with S-phase histone H1 compared with histone H1 from G0- or M-phase cells, indicating that the phosphorylation state of histone H1 has a direct effect on chromatin structure. Using reconstituted minichromosomes as substrate in the SV40 in vitro replication system, we measured a higher replication efficiency for SV40 minichromosomes reconstituted with S-phase histone H1 compared with G0- or M-phase histone H1. These data indicate that the chromatin structure induced by the phosphorylation of histone H1 influences the replication efficiency of SV40 minichromosomes in vitro.  相似文献   

3.
4.
Phosphorylation of histone fractions in the presence and absence of DNA synthesis was measured using the new “isoleucine-limiting” method for synchronizing Chinese hamster cells in early G1-phase. Using preparative electrophoresis, histone f1 phosphorylation was found to be dependent upon cell-cycle position, being absent in G1-arrested and G1-traversing cells and active in the S-phase. The absence of f1 phosphorylation in G1-arrested cells, which are known to exhibit f1 turnover, indicates that f1 phosphorylation is not an obligatory part of the f1 turnover process. In contrast to histone f1, it was found that histone f2a2 phosphorylation is independent of cell-cycle position, occurring with equal magnitude in the G1-traversing state when DNA synthesis is essentially absent and in the S-phase when DNA synthesis is active. When cells were arrested in the G1-state by isoleucine deprivation, f2a2 phosphorylation continued to be active, occurring at 56% of the rate observed in the G1-traversing state. These results indicate that phosphorylation of histone f2a2 is independent of f2a2 synthesis, independent of DNA synthesis, and independent of histone f1 phosphorylation. Because f2a2 is actively phosphorylated in G1-arrested cells known to be active in the synthesis of various types of RNA (including messenger) as well as in G1-traversing and S-phase cells, we feel that phosphorylation of histone f2a2 should continue to be considered in models concerning activation of DNA template activity.  相似文献   

5.
Physiologically spaced nucleosome formation in HeLa cell extracts is ATP dependent. ATP hydrolysis is required for chromatin assembly on both linear and covalently closed circular DNA. The link between the phosphorylation state of histones and nucleosome formation has been examined and we demonstrate that in the absence of histone phosphorylation no stable and regularly spaced nucleosomes are formed. Phosphorylated H3 stabilizes the nucleosome core; while phosphorylation of histone H2a is necessary to increase the linker length between nucleosomes from 0 to approximately 45 bp. Histone H1 alone, whether phosphorylated or unphosphorylated, does not increase the nucleosome repeat length in the absence of core histone phosphorylation. Phosphorylations of H1 and H3 correlate with condensation of chromatin. Maximum ATP hydrolysis which is necessary to increase the periodicity of nucleosomes from approximately 150 to approximately 185 bp, not only inhibits H1 and H3 phosphorylation but facilitates their dephosphorylation.  相似文献   

6.
张旭  李晴 《生命科学》2014,(11):1176-1186
真核生物中的DNA复制,不但要保证DNA编码的基因组信息高保真复制,也要保证染色质结构所蕴含的表观遗传组稳定传递,这个过程对于维持基因组的完整性和稳定性至关重要。时至今日,人们对DNA复制的机制已经有了深入的认识,但是对染色质复制以及表观遗传信息传递的了解才刚刚开始。组蛋白是染色质结构中最主要的蛋白组成部分,其上面丰富的转录后修饰是表观遗传调控的核心方式之一。从最近几年组蛋白的修饰研究进展入手,主要综述在DNA复制过程中组蛋白修饰如何参与染色质复制的调控。  相似文献   

7.
During interphase, histone amino-terminal tails play important roles in regulating the extent of DNA compaction. Post-translational modifications of the histone tails are intimately associated with regulating chromatin structure: phosphorylation of histone H3 is associated with proper chromosome condensation and dynamics during mitosis, while multiple H2B, H3, and H4 tail acetylations destabilize the chromatin fiber and are sufficient to decondense chromatin fibers in vitro. In this study, we investigate the spatio-temporal dynamics of specific histone H3 phosphorylations and acetylations to better understand the interplay of these post-translational modifications throughout the cell cycle. Using a panel of antibodies that individually, or in combination, recognize phosphorylated serines 10 and 28 and acetylated lysines 9 and 14, we define a series of changes associated with histone H3 that occur as cells progress through the cell cycle. Our results establish that mitosis appears to be a period of the cell cycle when many modifications are highly dynamic. Furthermore, they suggest that the upstream histone acetyltransferases/deacetylases and kinase/phosphatases are temporally regulated to alter their function globally during specific cell cycle time points.  相似文献   

8.
Several methods to synchronize cultured cells in the cell cycle are based on temporary inhibition of DNA replication. Previously it has been reported that cells synchronized this way exhibited significant growth imbalance and unscheduled expression of cyclins A and B1. We have now observed that HL-60 cells exposed to inhibitors of DNA replication (thymidine, aphidicolin and hydroxyurea), at concentrations commonly used to synchronize cell populations, had histone H2AX phosphorylated on Ser-139. This modification of H2AX, a marker of DNA damage (induction of DNA double-strand breaks; DSBs), was most pronounced in S-phase cells, and led to their apoptosis. Thus, to a large extent, synchronization was caused by selective kill of DNA replicating cells through induction of replication stress. In fact, similar synchronization has been achieved by exposure of cells to the DNA topoisomerase I inhibitor camptothecin, a cytotoxic drug known to target S-phase cells. A large proportion of the surviving cells 'synchronized' by DNA replication inhibitors at the G1/S boundary had phosphorylated histone H2AX. Inhibitors of DNA replication, thus, not only selectively kill DNA replicating cells, induce growth imbalance and alter the machinery regulating progression through the cycle, but they also cause DNA damage involving formation of DSBs in the surviving ('synchronized') cells. The above effects should be taken into account when interpreting data obtained with the use of cells synchronized by inhibitors of DNA replication.  相似文献   

9.
Role of amino-terminal histone domains in chromatin replication.   总被引:5,自引:2,他引:3       下载免费PDF全文
Simian virus 40 minichromosomes were treated with trypsin to specifically remove the amino-terminal histone domains (tails). Trypsin treatment does not affect the spacing and the number of nucleosomes on minichromosomes but indices a more extended conformation, as shown by the reduced sedimentation coefficient of trypsinized minichromosomes compared with the untreated controls. Trypsinized minichromosomes replicate more efficiently than control minichromosomes in in vitro replication assays. The increased template efficiency appears to be due to higher rates of replicative fork movement. In vitro replication in the presence of protein-free competitor DNA shows that replicating trypsinized minichromosomes do not lose nucleosomes and replicating competitor DNA does not gain nucleosomes. This finding suggests that tailless nucleosomes are transferred from the unreplicated prefork stem to replicated DNA branches and excludes a participation of the basic histone domains in nucleosome transfer.  相似文献   

10.
A peek into the complex realm of histone phosphorylation   总被引:2,自引:0,他引:2  
  相似文献   

11.
Reactivation of chicken erythrocyte nuclei for DNA replication in Xenopus egg extracts involves two phases of chromatin remodelling: a fast decondensation leading to a small volume increase and chromatin dispersion occurring within a few minutes (termed stage I decondensation), followed by a slower membrane-dependent decondensation and enlargement of up to 40-fold from the initial volume (stage II decondensation). Chromatin decondensation as measured by nuclear swelling and micrococcal nuclease digestion required ATP. We observed a characteristic change in the phosphorylation pattern of erythrocyte proteins upon incubation in egg extract. While histones H5, H2A, and H4 became selectively phosphorylated during decondensation, the phosphorylation of histone H3 and of several nonhistone proteins was prevented. Furthermore, histone H5 was selectively released from erythrocyte nuclei in an energy-dependent reaction. These molecular changes already occurred during stage I decondensation and they persisted during stage II decondensation. DNA replication was confined to nuclei of stage II decondensation which incorporated lamin LIII from the egg extract. These results show that initiation of DNA replication in chicken erythrocytes requires in addition to ATP-dependent chromatin remodelling (stage I), further changes in chromatin structure that correlates with lamin LIII incorporation, and stage II decondensation.  相似文献   

12.
A study was made of the phosphorylation of chromatographically purified histone H1 subfractions from the liver of premetamorphic tadpoles (Ranacatesbeiana). Two H1 subfractions were obtained which differed in terms of net incorporation of [32P]phosphate invivo. Analysis of N-bromosuccinimide cleavage products further revealed that the two subfractions also differed in the relative distribution of [32P]phosphate in N- and C-terminal regions of the molecule. Incorporation of [32P]phosphate into both regions of the molecule occurred virtually exclusively in serine residues.  相似文献   

13.
Faithful inheritance of the chromatin structure is essential for maintaining the gene expression integrity of a cell. Histone modification by acetylation and deacetylation is a critical control of chromatin structure. In this study, we test the hypothesis that histone deacetylase 1 (HDAC1) is physically associated with a basic component of the DNA replication machinery as a mechanism of coordinating histone deacetylation and DNA synthesis. Proliferating cell nuclear antigen (PCNA) is a sliding clamp that serves as a loading platform for many proteins involved in DNA replication and DNA repair. We show that PCNA interacts with HDAC1 in human cells and in vitro and that a considerable fraction of PCNA and HDAC1 colocalize in the cell nucleus. PCNA associates with histone deacetylase activity that is completely abolished in the presence of the HDAC inhibitor trichostatin A. Trichostatin A treatment arrests cells at the G(2)-M phase of the cell cycle, which is consistent with the hypothesis that the proper formation of the chromatin after DNA replication may be important in signaling the progression through the cell cycle. Our results strengthen the role of PCNA as a factor coordinating DNA replication and epigenetic inheritance.  相似文献   

14.
In order to study cellular and viral determinants of pathogenicity, interactions between coxsackievirus B3 (CVB3) replication and cellular protein tyrosine phosphorylation were investigated. During CVB3 infection of HeLa cells, distinct proteins become phosphorylated on tyrosine residues, as detected by the use of antiphosphotyrosine Western blotting. Two proteins of 48 and 200 kDa showed enhanced tyrosine phosphorylation 4 to 5 h postinfection (p.i.), although virus-induced inhibition of cellular protein synthesis had already occurred 3 to 4 h p.i. Subcellular fractionation experiments revealed distinct localization of tyrosine-phosphorylated proteins of 48 and 200 kDa in the cytosol and membrane fractions of infected cells, respectively. In addition, in Vero cells infected with CVB3, echovirus (EV)11, or EV12, increased tyrosine phosphorylation of a 200-kDa protein was detected 6 h p.i. Herbimycin A, a specific inhibitor of Src-like protein tyrosine kinases, was shown to inhibit virus-induced tyrosine phosphorylations and to reduce the production of progeny virions. In contrast, in cells treated with the inhibitors staurosporine and calphostin C, the synthesis of progeny virions was not affected. Immunoprecipitation experiments suggested that the tyrosine-phosphorylated 200-kDa protein in CVB3-infected cells is of cellular origin. In summary, these investigations have begun to unravel the effect of CVB3 as well as EV11 and EV12 replication on cellular tyrosine phosphorylation and support the importance of tyrosine phosphorylation events for effective virus replication. Such cellular phosphorylation events triggered in the course of enterovirus infection may enhance virus replication.  相似文献   

15.
16.
The onset of DNA replication normally is coincident with an increase in histone 1 phosphorylation and a relaxation in chromatin structure. In this paper we show that 5 mM theophylline, added 2 h after selective detachment to synchronized HeLa-S-3 cells, delays the onset and reduces the rate of DNA synthesis while theophylline treatment beginning at 8 h has no effect on subsequent DNA synthesis. These actions of theophylline are accompanied by an inhibition of histone 1 phosphorylation and a prevention of the normal relaxation in chromatin structure between G1 and S phases as revealed by image analysis of Feulgen-stained nuclei. The time courses of intracellular cyclic AMP levels, nonhistone protein phosphorylation, and [3H]lysine incorporation are also compared in the same treated and untreated synchronized HeLa cells. Comparison with experiments using 1-beta-D- arabinofuranosylcytosine (Ara-C) shows that the above phenomena are not a direct result of inhibition of DNA synthesis. We interpret our results as evidence that the associations between histone 1 phosphorylation, chromatin relaxation, and the onset of DNA synthesis are temporally and causally related.  相似文献   

17.
We have recently cloned the human nucleosome assembly protein 2 (NAP-2). Here, we demonstrate that casein kinase 2 (CKII) from HeLa cell nuclear extracts interacts with immobilized NAP-II, and phosphorylates both NAP-2 and nucleosome assembly protein 1 (NAP-1) in vitro. Furthermore, NAP-1 and NAP-2 phosphorylation in crude HeLa cell extracts is abolished by heparin, a specific inhibitor of CKII. Addition of core histones can stimulate phosphorylation of NAP-1 and NAP-2 by CKII. NAP-2 is also a phosphoprotein in vivo. The protein is phosphorylated at the G0/G1 boundary but it is not phosphorylated in S-phase. Here, we show that NAP-2 is a histone chaperone throughout the cell cycle and that its cell-cycle distribution might be governed by its phosphorylation status. Phosphorylated NAP-2 remains in the cytoplasm in a complex with histones during the G0/G1 transition, whereas its dephosphorylation triggers its transport into the nucleus, at the G1/S-boundary, with the histone cargo, suggesting that binding to histones does not depend on phosphorylation status. Finally, indirect immunofluorescence shows that NAP-2 is present during metaphase of HeLa and COS cells, and its localization is distinct from metaphase chromosomes.  相似文献   

18.
Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2(D)) or alanine (RPA2(A)). Although RPA2(D) was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2(D) mutant was selectively unable to associate with replication centers in vivo. In cells containing greatly reduced levels of endogenous RPA2, RPA2(D) again did not localize to replication sites, indicating that the defect in supporting chromosomal DNA replication is not due to competition with the wild-type protein. Use of phosphospecific antibodies demonstrated that endogenous hyperphosphorylated RPA behaves similarly to RPA2(D). In contrast, under DNA damage or replication stress conditions, RPA2(D), like RPA2(A) and wild-type RPA2, was competent to associate with DNA damage foci as determined by colocalization with gamma-H2AX. We conclude that RPA2 phosphorylation prevents RPA association with replication centers in vivo and potentially serves as a marker for sites of DNA damage.  相似文献   

19.
Mono Q ion exchange high performance liquid chromatography (HPLC) reveals that the main histone deacetylase activity (HD1) of germinating Zea mays embryos consists of multiple enzyme forms. Chromatography of HD1 after treatment with alkaline phosphatase yields two distinct histone deacetylase forms (HD1-A, HD1-B). The same is true for chromatography after phosphatase treatment of a total cell extract. One of these enzyme forms (HD1-A) is subject to phosphorylation, which causes a change in the substrate specificity of the enzyme, as shown with HPLC-purified individual core histone species; the substrate specificity for H2A increases more than 2-fold after phosphorylation, whereas the specificity for H3 decreases to about 60%. The total histone deacetylase activity is quantitatively released from isolated nuclei after extraction with moderate ionic strength buffers; no significant residual enzyme activity could be detected in the nuclear matrix.  相似文献   

20.
Systematic analysis of histone modifications has revealed a plethora of posttranslational modifications that mediate changes in chromatin structure and gene expression. Histone phosphorylation is a transient histone modification that becomes induced by extracellular signals, DNA damage or entry into mitosis. Importantly, phosphorylation of histone proteins does lead not only to the binding of specific reader proteins but also to changes in the affinity for readers or writers of other histone modifications. This induces a cross-talk between different chromatin modifications that allows the spatio-temporal control of chromatin-associated events. In this review we will summarize the progress in our current knowledge of factors sensing reversible histone phosphorylation in different biological scenarios. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号