首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Regulation of hydrogenase in Rhizobium japonicum.   总被引:7,自引:5,他引:7       下载免费PDF全文
Factors that regulate the expression of an H2 uptake system in free-living cultures of Rhizobium japonicum have been investigated. Rapid rates of H2 uptake by R. japonicum were obtained by incubation of cell suspensions in a Mg-phosphate buffer under a gas phase of 86.7% N2, 8.3% H2, 4.2% CO2, and 0.8% O2. Cultures incubated under conditions comparable with those above, with the exception that Ar replaced H2, showed no hydrogenase activity. When H2 was removed after initiation of hydrogenase derepression, further increase in hydrogenase activity ceased. Nitrogenase activity was not essential for expression of hydrogenase activity. All usable carbon substrates tested repressed hydrogenase formation, but none of them inhibited hydrogenase activity. No effect on hydrogenase formation was observed from the addition of KNO3 or NH4Cl at 10 mM. Oxygen repressed hydrogenase formation, but did not inhibit activity of the enzyme in whole cells. The addition of rifampin or chloramphenicol to derepressed cultures resulted in inhibition of enzyme formation similar to that observed by O2 repression. The removal of CO2 during derepression caused a decrease in the rate of hydrogenase formation. No direct effect of CO2 on hydrogenase activity was observed.  相似文献   

2.
In contrast to the wild type, H2 uptake-constitutive mutants of Rhizobium japonicum expressed both hydrogenase and ribulose bisphosphate carboxylase activities when grown heterotrophically. However, as bacteroids from soybean root nodules, the H2 uptake-constitutive mutants, like the wild type, did not express ribulose bisphosphate carboxylase activity.  相似文献   

3.
Nickel is a component of hydrogenase in Rhizobium japonicum   总被引:11,自引:12,他引:11       下载免费PDF全文
The derepression of H2-oxidizing activity in free-living Rhizobium japonicum does not require the addition of exogenous metal to the derepression media. However, the addition of EDTA (6 microM) inhibited derepression of H2 uptake activity by 80%. The addition of 5 microM nickel to the derepression medium overcame the EDTA inhibition. The addition of 5 microM Cu or Zn also relieved EDTA inhibition, but to a much lesser extent; 5 microM Fe, Co, Mg, or Mn did not. The kinetics of induction and magnitude of H2 uptake activity in the presence of EDTA plus Ni were similar to those of normally derepressed cells. Nickel also relieved EDTA inhibition of methylene blue-dependent Hup activity, suggesting that nickel is involved directly with the H2-activating hydrogenase enzyme. Adding nickel or EDTA to either whole cells or crude extracts after derepression did not affect the hydrogenase activity. Cells were grown in 63Ni and the hydrogenase was subsequently purified by gel electrophoresis. 63Ni comigrated with the H2-dependent methylene blue reducing activity on native polyacrylamide gels and native isoelectric focusing gels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the nickel-containing hydrogenase band revealed a single polypeptide with a molecular weight of ca. 67,000. We conclude that the hydrogenase enzyme in R. japonicum is a nickel-containing metalloprotein.  相似文献   

4.
Properties of the hydrogenase system in Rhizobium japonicum bacteroids   总被引:18,自引:0,他引:18  
The hydrogenase system which catalyzes the oxyhydrogen reaction in soybean nodules produced by strains of Rhizobium japonicum is located in the bacteroids. The hydrogenase complex in intact bacteroids has an apparent Km for H2 of 2.8 μM and an apparent Km for O2 of 1.3 μM. The addition of hydrogen to bacteroids increases oxygen uptake but decreases respiratory CO2 production, indicating a conservation of endogenous substrates. After correction for the effect of hydrogen on endogenous respiration a ratio of 1.9 ± 0.1 for H2 to O2 uptake was determined. Bacteroids from greenhouse or field-grown soybeans that evolved hydrogen showed no measurable oxyhydrogen reaction activity whereas consistent activity was demonstrated by bacteroids from soybean nodules that evolved little or no H2.  相似文献   

5.
Chemoautotrophic growth of Alcaligenes eutrophus 17707 is inhibited by 20% oxygen in the gas phase. Lowering the oxygen concentration to 4% results in chloramphenicol-sensitive derepression of soluble and membrane-bound hydrogenase activity (and of soluble hydrogenase antigen), showing that oxygen inhibition is due at least in part to repression of hydrogenase synthesis. Mutations resulting in derepression of hydrogenase activity (and antigen) under 25% oxygen (Ose-) mobilized with a self-transmissable plasmid which is already known to carry genes necessary for hydrogenase expression. Plasmid-borne mutations resulting in loss of soluble hydrogenase activity have no effect on the Ose phenotype, but chromosomal mutations resulting in reduction or loss of both hydrogenase activities cannot be made Ose-. The Ose- mutation does not alter the thermostability of either hydrogenase, and soluble hydrogenase in the mutant reacts with complete identity with that of the wild type, indicating that the Ose- phenotype does not result from structural alterations in either enzyme. Ose- mutants are also relieved of normal hydrogenase repression by organic substrates, which aggravates hydrogenase-mediated inhibition of heterotrophic growth by hydrogen. Regulation of hydrogenase in Ose- strains of A. eutrophus 17707 is nearly identical to that of wild-type A. eutrophus strains H1 and H16.  相似文献   

6.
7.
We purified active hydrogenase from free-living Rhizobium japonicum by affinity chromatography. The uptake hydrogenase of R. japonicum has been treated previously as an oxygen-sensitive protein. In this purification, however, reducing agents were not added nor was there any attempt to exclude oxygen. In fact, the addition of sodium dithionite to aerobically purified protein resulted in the rapid loss of activity. Purified hydrogenase was more stable when stored under O2 than when stored under Ar. Sodium-chloride-washed hydrogen-oxidizing membranes were solubilized in Triton X-100 and deoxycholate and loaded onto a reactive red 120-agarose column. Purified hydrogenase elutes at 0.36 M NaCl, contains a nickel, and has a pH optimum of 6.0. There was 452-fold purification resulting in a specific activity of 76.9 mumol of H2 oxidized per min per mg of protein and a yield of 17%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed subunits with estimated molecular weights of 65,000 and 33,000. Hydrogenase prepared in this manner was used to raise and affinity purify antibodies against both subunits.  相似文献   

8.
The synthesis of an H2 oxidation system in free-living Rhizobium japonicum wild-type strain SR is repressed by oxygen. Maximal H2 uptake rates were obtained in strain SR after derepression in 11 microM or less dissolved oxygen. Oxygen levels above 45 microM completely repressed H2 uptake in strain SR. Five R. japonicum mutant strains that are hypersensitive to repression or H2 oxidation by oxygen were derived from strain SR. The mutants were obtained by screening H2 uptake-negative mutants that retained the ability to oxidize H2 as bacteroids from soybean nodules. As bacteroids, the five mutant strains were capable of H2 oxidation rates comparable to that of the wild type. The mutants did not take up H2 when derepressed in 22 microM dissolved oxygen, whereas strain SR had substantial activity at this oxygen concentration. The O2 repression of H2 uptake in both the wild-type and two mutant strains, SR174 and SR200, was rapid and was similar to the effect of inhibiting synthesis of H2 uptake system components with rifampin. None of the mutant strains was able to oxidize H2 when the artificial electron acceptors methylene blue or phenazine methosulfate were provided. The mutant strains were not sensitive to killing by oxygen, they took up O2 at rates similar to strain SR, and they did not produce an H2 uptake system that was oxygen labile. Cyclic AMP levels were comparable in strain SR and the five mutant strains after subjection of the cultures to the derepression conditions.  相似文献   

9.
10.
Nif- Hup- mutants of Rhizobium japonicum.   总被引:5,自引:2,他引:5       下载免费PDF全文
Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains regained both H2 uptake ability and nitrogenase activity.  相似文献   

11.
12.
Revertible hydrogen uptake-deficient mutants of Rhizobium japonicum.   总被引:14,自引:7,他引:14       下载免费PDF全文
We have developed mutants of Rhizobium japonicum which are deficient in H2 uptake capacity (Hup-) and which spontaneously revert to the parent type at a frequency consistent with that of a single-point mutation (ca. 1.0 x 10(-09)). The mutagenesis by nitrous acid and the selection of the Hup- phenotype by using penicillin and chemolithotrophy as enrichment for chemolithotrophy-deficient strains are described. Two mutants retain low but reproducible levels of ribulose bisphosphate-dependent CO2 fixation when grown on a low-carbon medium under an atmosphere of 1% O2, 4% H2, 5% CO2, and 90% N2. Neither O2 nor the artificial electron acceptors phenazine methosulfate or methylene blue supported detectable H2 uptake by the free-living Hup- mutants or by their bacteroids. Plant growth experiments under bacteriologically controlled conditions were conducted to assess the mutants' performance as inocula for soybean plants. Plants inoculated with Hup- strains had lower dry weights and contained less total N than did plants inoculated with the parent Hup+ strain. Use of either the Hup- mutants or the Hup+ parent strain as inocula, however, did not significantly affect the acetylene-reducing activity or the fresh weight of nodules. These results, obtained with apparently isogenic lines of H2 uptake-deficient R. japonicum, provide strong support for a beneficial role of the H2 uptake phenotype in legume symbiosis.  相似文献   

13.
14.
Rhizobium japonicum strains 3I1b110 and 61A76 were mutagenized to obtain 25 independently derived mutants that produced soybean nodules defective in nitrogen fixation, as assayed by acetylene reduction. The proteins of both the bacterial and the plant portions of the nodules were analyzed by two-dimensional polyacrylamide gel electrophoresis. All of the mutants had lower-than-normal levels of the nitrogenase components, and all but four contained a prominent bacteroid protein not observed in wild-type bacteroids. Experiments with bacteria grown ex planta suggested that this protein was derepressed by the absence of ammonia. Nitrogenase component II of one mutant was altered in isoelectric point. The soluble plant fraction of the nodules of seven mutants had very low levels of heme, yet the nodules of five of these seven mutants contained the polypeptide of leghemoglobin. Thus, the synthesis of the globin may not be coupled to the content of available heme in soybean nodules. The nodules of the other two of these seven mutants lacked not only leghemoglobin but most of the other normal plant and bacteroid proteins. Ultrastructural examination of nodules formed by these two mutants indicated normal ramification of infection threads but suggested a problem in subsequent survival of the bacteria and their release from the infection threads.  相似文献   

15.
Rhizobium japonicum hydrogenase was purified to homogeneity from soybean root nodules by four column chromatography steps after solubilization from membranes by treatment with a nonionic detergent. The specific activity was from 40 to 65 mumol H2 oxidized min-1 mg protein-1 and was increased 450-fold relative to that in bacteroids. The yield of activity was from 7 to 12%. The molecular weight of the native enzyme was 104,000 as determined by sucrose density gradient centrifugation. Electrophoresis in the presence of sodium dodecyl sulfate revealed two subunits with molecular weights of 64,000 and 35,000, indicating an alpha beta subunit structure. The amino acid content of the protein indicated 20 cysteine residues. Analysis of the metal content indicated 0.59 +/- 0.06 mol Ni/mol hydrogenase and 6.5 +/- 1.2 mol Fe/mol hydrogenase. Antisera prepared to the hydrogenase cross-reacted with the enzyme in bacteroid extracts at all stages of the purification but did not cross-react with extracts of Alcaligenes eutrophus grown under chemolithotrophic conditions. The similarity of rhizobial hydrogenase to the particulate hydrogenases of A. eutrophus and A. latus is discussed.  相似文献   

16.
Rhizobium meliloti mutants altered in ammonium utilization.   总被引:3,自引:3,他引:0       下载免费PDF全文
Derivatives of Rhizobium meliloti 2011 required trace amounts of glutamate to use ammonium as the nitrogen source for growth, although they could use serine as the sole nitrogen source. Specific activities of ammonium assimilatory enzymes were similar to those in strain Rm2011. The mutants were deficient in nitrogen fixation.  相似文献   

17.
Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP.   总被引:11,自引:0,他引:11  
Utilisation (uptake) of hydrogen gas by whole cells of Rhizobium japonicum was found to be influenced by the carbon source(s) present in the growth medium, with activity being highest in a medium containing sugars. Tricarboxylic acid cycle intermediates, such as malate, significantly reduced H2 utilisation. No reduction in the hydrogenase activity is observed when the enzyme is assayed directly by the tritium exchange method, indicating that the decrease in hydrogen uptake activity is not due to repression of hydrogenase biosynthesis. Cyclic AMP was found to alleviate the inhibition of H2 uptake by malate, and this requires new protein synthesis. Addition of chloramphenicol or rifampicin simultaneously with cyclic AMP eliminated the stimulation of H2 uptake in the malate medium. These results show that in R. japonicum cyclic AMP plays a major role in the regulation of H2 metabolism.  相似文献   

18.
19.
The uptake hydrogenase of chemolithotrophically grown Rhizobium japonicum was purified to apparent homogeneity with a final specific activity of 69 mumol of H2 oxidized per min per mg of protein. The procedure included Triton extraction of broken membranes and DEAE-cellulose and Sephacryl S-200 chromatographies. The purified protein contained two polypeptides separable only by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. They comigrated on native polyacrylamide gels and sucrose density gradients. The molecular weights were ca. 60,000 and 30,000. Densitometric scans of the sodium dodecyl sulfate gels indicated a molar ratio of 1.03 +/- 0.03. Antiserum was developed against the 60-kilodalton polypeptide for use in hydrogenase detection by an enzyme-linked immunosorbent assay. The antiserum did not cross-react with the 30-kilodalton polypeptide. Native gel electrophoresis of Triton-extracted cells grown in the presence of 63Ni showed comigration of the hydrogenase and radioactive Ni.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号