首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic profile of Ca++ uptake in the presence of oxalate is biphasic. An initial phase independent on oxalate is followed by an oxalate-dependent phase delayed in time. The ionophore X-537A only abolishes the net Ca++ uptake if added before the onset of the oxalate phase. However, during this phase, X-537A suddenly releases an amount of Ca++ similar in quantity to that released in the initial phase. The delay of the oxalate-dependent phase is a function of pH. At pH of about 5.5, the oxalate phase and simultaneous calcium oxalate precipitation would theoretically start at the beginning, with no delay. Ejection of protons during Ca++ uptake is strongly depressed by oxalate, but not by other organic anions which do not trap Ca++. It is suggested that oxalate is transferred to the inside of the vesicles as a monoprotonated species at expense of protons ejected by the Ca++-pump during the uptake of Ca++.  相似文献   

2.
The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. 'Red' and 'white' muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of Ca++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and 'Z' bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail 'red' muscle fibres are possible 'slow,' and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, 'red' muscle fibres of the anuran tai- musculature are not equivalent to 'Type I' fibres of higher chordates.  相似文献   

3.
Intracellular bound Ca++ has been localized throughout mitosis and cytokinesis in two plant species by means of in situ precipitation with potassium antimonate and electron microscope visualization. Identification of Ca++ as the major cation precipitated was made by comparing solubility properties in water, EDTA, and EGTA of the intracellular deposits with respect to those of K+-, Mg++-, and Ca++- antimonate standards. In spermatogenous cells of the water fern, Marsilea vestita, and stomatal complex cells of barley, Hordeum vulgare, antimonate deposits have been found associated with the endoplasmic reticulum (ER), vacuoles, euchromatin/nucleoplasm, and mitochondria. The last contain a much higher density of precipitates in Marsilea than in Hordeum. Dictyosomes and the nuclear envelope of Marsilea also contain antimonate deposits, as do the plasmalemma, cell wall, and phragmoplast vesicles of Hordeum. Microtubule-organizing centers such as kinetochores and the blepharoplast of Marsilea do not stain. In spite of differences in associated antimonate between certain organelles of the two species, the presence of antimonate aong the ER throughout the cell cycle is common to both. Of particular interest are those precipitates seen along the tubules and cisternae of the extensive smooth ER that surrounds and invades the mitotic spindle in both species. The ability to bind divalent cations makes the mitotic apparatus (MA)-associated ER a likely candidate for regulation of free Ca++ levels in the immediate vicinity of structural components and processes that are Ca++-sensitive and proposed to be Ca++-regulated.  相似文献   

4.
We have examined the role of Ca++ in phototransduction by manipulating the intracellular Ca++ concentration in physiologically active suspensions of isolated and purified rod photoreceptors (OS-IS). The results are summarized by the following. Measurement of Ca++ content using arsenazo III spectroscopy demonstrates that incubation of OS-IS in 10 nM Ca++-Ringer's solution containing the Ca++ ionophore A23187 reduces their Ca++ content by 93%, from 1.3 to 0.1 mol Ca++/mol rhodopsin. Virtually the same reduction can be accomplished in 10 nM Ca++-Ringer's without ionophore, presumably via the plasma membrane Na/Ca exchange mechanism. Hundreds of photoresponses can be obtained from the Ca++-depleted OS-IS for at least 1 h in 10 nM Ca++-Ringer's with ionophore. The kinetics and light sensitivity of the photoresponse are essentially the same in the presence or absence of the ionophore in 10 nM Ca++. The addition of A23187 in 1 mM Ca++-Ringer's results in a Ca++ influx that rapidly suppresses the dark current and the photoresponse. This indicates that there is an intracellular site at which Ca++ can modulate the light-regulated conductance. Both the current and photoresponse can be restored if intracellular Ca++ is reduced by lowering the external Ca++ to 10 nM. During the transition from high to low Ca++, the response duration becomes shorter, which suggests that it can be regulated by a Ca++-dependent mechanism. If the dark current and the photoresponse are suppressed by adding A23187 in 1 mM Ca++-Ringer's, the subsequent addition of the cyclic GMP phosphodiesterase inhibitor isobutylmethylxanthine can restore the current and photoresponse. This implies that under conditions where the rod can no longer control its intracellular Ca++, the elevation of cyclic GMP levels can restore light regulation of the channels. The persistence of normal flash responses under conditions where intracellular Ca++ levels are reduced and perturbed suggests that changes in the intracellular Ca++ concentration do not cause the closure of the light-regulated channel.  相似文献   

5.
Calcium-mediated decrease of a voltage-dependent potassium current.   总被引:4,自引:0,他引:4       下载免费PDF全文
Elevated intracellular Ca++ concentration reduces the amplitude of an early, voltage-dependent K+ current (IA) in the Type B photoreceptor of Hermissenda crassicornis. Internal Ca++ is increased by activating a voltage and light-dependent Ca++ current present in these cells or by direct iontophoresis of Ca++ ions. Substitution of Ba++ for Ca++ or elimination of Ca++ from the sea water bathing the cells abolishes the reduction in IA during paired light and depolarizing voltage steps. The delayed K+ current (IB) in these cells is also reduced during paired light and voltage steps, but this decrease of IB is not affected by removal of extracellular Ca++. IB (but not IA), apparently much less dependent on intracellular Ca++ levels, is reduced by light alone. Ca++ iontophoresis also abolishes the light-dependent Na+ current, which recovers with a time course of minutes.  相似文献   

6.
The whole cell patch-clamp technique, in both standard and perforated patch configurations, was used to study the influence of Na+-Ca++ exchange on rundown of voltage-gated Ca++ currents and on the duration of tail currents mediated by Ca++-dependent Cl- channels. Ca++ currents were studied in GH3 pituitary cells; Ca++-dependent Cl- currents were studied in AtT-20 pituitary cells. Na+-Ca++ exchange was inhibited by substitution of tetraethylammonium (TEA+) or tetramethylammonium (TMA+) for extracellular Na+. Control experiments demonstrated that substitution of TEA+ for Na+ did not produce its effects via a direct interaction with Ca++-dependent Cl- channels or via blockade of Na+-H+ exchange. When studied with standard whole cell methods, Ca++ and Ca++-dependent Cl- currents ran down within 5-20 min. Rundown was accelerated by inhibition of Na+-Ca++ exchange. In contrast, the amplitude of both Ca++ and Ca++-dependent Cl- currents remained stable for 30-150 min when the perforated patch method was used. Inhibition of Na+-Ca++ exchange within the first 30 min of perforated patch recording did not cause rundown. The rate of Ca++-dependent Cl- current deactivation also remained stable for up to 70 min in perforated patch experiments, which suggests that endogenous Ca++ buffering mechanisms remained stable. The duration of Ca++-dependent Cl- currents was positively correlated with the amount of Ca++ influx through voltage-gated Ca++ channels, and was prolonged by inhibition of Na+-Ca++ exchange. The influence of Na+-Ca++ exchange on Cl- currents was greater for larger currents, which were produced by greater influx of Ca++. Regardless of Ca++ influx, however, the prolongation of Cl- tail currents that resulted from inhibition of Na+-Ca++ exchange was modest. Tail currents were prolonged within tens to hundreds of milliseconds of switching from Na+- to TEA+-containing bath solutions. After inhibition of Na+-Ca++ exchange, tail current decay kinetics remained complex. These data strongly suggest that in the intact cell, Na+-Ca++ exchange plays a direct but nonexclusive role in limiting the duration of Ca++-dependent membrane currents. In addition, these studies suggest that the perforated patch technique is a useful method for studying the regulation of functionally relevant Ca++ transients near the cytoplasmic surface of the plasma membrane.  相似文献   

7.
We used a Ca++-sensitive electrode to measure changes in extracellular Ca++ concentration in cell suspensions of Dictyostelium discoideum during differentiation and attractant stimulation. The cells maintained an external level of 3-8 microM Ca++ until the beginning of aggregation and then started to take up Ca++. The attractants, folic acid, cyclic AMP, and cyclic GMP, induced a transient uptake of Ca++ by the cells. The response was detectable within 6 s and peaked at 30 s. Half-maximal uptake occurred at 5 nM cyclic AMP or 0.2 microM folic acid, respectively. The apparent rate of uptake amounted to 2 X 10(7) Ca++ per cell per min. Following uptake, Ca++ was released by the cells with a rate of 5 X 10(6) ions per cell per min. Specificity studies indicated that the induced uptake of Ca++ was mediated by cell surface receptors. The amount of accumulated Ca++ remained constant as long as a constant stimulus was provided. No apparent adaptation occurred. The cyclic AMP-induced uptake of Ca++ increased during differentiation and was dependent on the external Ca++ concentration. Saturation was found above 10 microM external Ca++. The time course and magnitude of the attractant-induced uptake of external Ca++ agree with a role of Ca++ during contraction. During development the extracellular Ca++ level oscillated with a period of 6-11 min. The change of the extracellular Ca++ concentration during one cycle would correspond to a 30-fold change of the cellular free Ca++ concentration.  相似文献   

8.
We have shown that a Ca++-ionophore activity is present in the (Ca++ +Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A. E. Shamoo & D. H. MacLennan, 1974. Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca++ +Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential -SH groups. However, it appears that there are no essential -SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential -SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

9.
The possibility of Ca++ acting as second messenger for insulin in rat liver was investigated using the net stimulation of 14C-glucose incorporation into glycogen by isolated hepatocytes as an index of insulin action. An insulin effect could be partially sustained in the virtual absence of Ca++ and Mg++ and a maximal insulin effect could be observed in the presence of either Ca++ or Mg++, suggesting that extracellular Ca++ is not required for insulin action. Inhibiting the activity of calmodulin, an intracellular mediator of Ca++ action, with trifluoperazine had little effect on insulin action. The efflux of 45Ca from prelabeled hepatocytes was not altered by the presence of insulin arguing against insulin-induced changes in Ca++ fluxes. Collectively, these results do not support the role of Ca++ as second messenger for insulin action in liver.  相似文献   

10.
I Cavero  M Spedding 《Life sciences》1983,33(26):2571-2581
The aim of this series of minireviews is to present material from multidisciplinary sources to facilitate the understanding of the pharmacology and the ample clinical potential of a class of drugs that were originally designated as "calcium antagonists" and more recently have been referred to as "calcium entry blockers", "calcium slow channel blockers" or "calcium modulators". In this first report our attention will be focussed on the pivotal role of Ca++ as a messenger linking stimuli of extracellular origin to the intracellular environment. Eucaryotic cells have a number of powerful means to control their cytosolic Ca++ concentration. Firstly, in a cell at rest the cellular membrane is relatively impermeable to passive Ca++ movements. This property of the plasmalemma prevents the high free Ca++ concentration (approximately 1 mM) of the extracellular compartment from invading the cytosol (approximately 0.1 microM). However, extracellular Ca++ can reach the cytosol through the Na+/Ca++ exchange mechanism and the plasmalemma possesses special Ca++ channels the conductance of which is controlled by gates that are opened by critical changes in cellular polarization (voltage-operated channels: VOC) or by receptor activation (receptor-operated channel: ROC). The Ca++ entering via VOC or ROC can subsequently trigger the liberation of Ca++ from the sarcoplasmic reticulum or from calcium stores located in the inner side of the plasmalemma. The intracellular message generated by external stimuli is transferred to the response mechanism by several cytosolic proteins that require Ca++ as activator. Finally, the termination of the response is the result of a reduction in the cytosolic Ca++ concentration that is accomplished by the Na+/Ca++ exchange mechanism or by energy-dependent pumps which extrude Ca++ from the cell or store it in subcellular organelles. Therefore, any of the numerous steps of the excitation-response coupling which employ Ca++ as a messenger or as a protein activator can be the site of action of a pharmacological agent. In the follow-up minireview, some methods to determine the basic pharmacological profile of compounds interfering with cellular Ca++-dependent functions will be described.  相似文献   

11.
The effects of the thyroid status on the Ca++-transporting capabilities of rat slow skeletal muscle (m.soleus) were studied. The oxalate supported Ca++-uptake activity and Ca++-loading capacity of muscle homogenates from hyperthyroid rats showed an approximate 4.2 and 2.5 fold increase, respectively, as compared to values found in the hypothyroid group. Muscle homogenates of euthyroid rats gave intermediate values. The specific activity of oxalate supported Ca++ uptake, but not the Ca++-loading capacity, of membrane preparations enriched with respect to sarcoplasmic reticulum (SR) increased in proportion to the thyroid status. This was paralleled by a 3.5 fold increase in the amount of active Ca++ pumps in the SR preparations in the transition from hypothyroidism to hyperthyroidism as determined by measurement of Ca++-dependent 32P incorporation. These observations are not explained by differences in degree of purification of the examined SR preparations. Protein profiles of the membrane preparations obtained by gel electrophoresis indicated a thyroid-hormone dependent increase in Ca++-pump content relative to other SR proteins. The results suggest that thyroid hormone stimulates the proliferation of the SR and possibly also increases the Ca++-pump density in the SR membrane.  相似文献   

12.
Three forms of calpactin, the 36,000 Mr Ca++-binding cytoskeletal protein, were isolated in large amounts from bovine lung and human placenta using cycles of calcium-dependent precipitation followed by solubilization with EGTA-containing buffers. Calpactin-I as a tetramer of heavy (36 kD) and light (11 kD) chains was the predominant form of calpactin isolated, however milligram amounts of the calpactin-I heavy chain monomer and calpactin-II, a related but distinct molecule, were also isolated by this method. Calpactin-II was characterized in some detail and found to bind two Ca++ ions with Kd's of 10 microM in the presence of phosphatidylserine. Both calpactin-I and -II were found to aggregate liposomes at micromolar Ca++ concentrations, suggesting that at least two phospholipid-binding sites are present on these molecules. Both calpactin monomers bind to and bundle actin filament at high (1 mM) but not low (less than 1 microM) Ca++ concentrations. Amino-terminal sequence analysis of a lower molecular mass variant of calpactin-II revealed that this protein was the previously identified human "lipocortin" molecule. Antibodies were elicited to calpactin-I and -II and the cell and subcellular distribution of each was compared. Calpactin-II was only present at high levels in tissues (lung, placenta) which contained high levels of calpactin-I. Other tissues (intestine) contained high calpactin-I and undetectable levels of calpactin-II. Double-label immunofluorescence microscopy on human fibroblasts revealed that, like calpactin-I, calpactin-II is present in a submembraneous reticular network, although the distribution of the two calpactins is not identical.  相似文献   

13.
Inhibition of platelet function by cAMP is due at least in part to a reduction in the agonist stimulated increase in cytoplasmic calcium during cell activation. This inhibition is also associated with cAMP-dependent phosphorylation of thrombolamban, a 22 kDa phosphoprotein which is present in the same membrane fraction as the calcium-dependent ATPase. Phosphorylation of this protein has been correlated with increased uptake of calcium by microsomal membranes. The present study was undertaken to examine the interaction of thrombolamban with the Ca++-ATPase in order to assess the possibility that the increased calcium uptake was by a direct effect of thrombolamban on Ca++-ATPase activity or that thrombolamban was a component of the Ca++-ATPase. Several approaches were utilized to assess the interaction of thrombolamban with the microsomal Ca++-ATPase. Gel filtration of labeled microsomes solubilized under non-denaturing conditions showed a major peak of radioactivity (Kav 0.64) corresponding to thrombolamban which was well separated from the Ca++-ATPase activity (Kav 0.09). Chemical cross-linking studies using partially purified thrombolamban and intact microsomes showed incorporation of the phosphoprotein into a 147,000 dalton complex. Indirect immunostaining with an anti-Ca++-ATPase antibody failed to demonstrate the Ca++-ATPase in the 147,000 dalton complex. Recombination of the phosphorylated thrombolamban with the Ca++-ATPase had no effect on Ca++-ATPase activity. These results indicate that, under the conditions used in these experiments, there was no apparent interaction between thrombolamban and the microsomal Ca++-ATPase. We conclude that thrombolamban is covalently bound to the Ca++-ATPase.  相似文献   

14.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

15.
In order to evaluate the manner by which fumarate enhances contractility in the anaerobic heart, we examined Ca++ movements in isolated heart mitochondria and in the isolated perfused heart. Our experiments showed that in isolated antimycin A plus cyanide treated mitochondria: (a) Ca++ uptake was promoted by electron transport generated by fumarate-dependent oxidation of NADH, (b) Ca++ stimulated fumarate-dependent oxidation of NADH, (c) the ratio of Ca++ uptake:NADH oxidized was 1.7 and (d) the Ca++ sequestered is transiently highly mobile and is rapidly released upon collapse of the membrane potential. In anaerobic hearts perfused with glucose plus fumarate, malate and glutamate Ca++ levels were the same as those in oxygenated hearts while in anaerobic organs perfused with or without glucose Ca++ content was appreciably lower. Succinate production in anaerobic heart perfusions was related to: (a) an increased retention of Ca++ by the heart, (b) a diminution in peak aortic pressure generated by cardiac contractions and (c) an increase in heart rate. The information obtained indicates that mitochondria have a capability for Ca++ movement which be used physiologically, particularly in fumarate perfused anaerobic hearts, to assist the mechanism for contraction and relaxation of the heart.  相似文献   

16.
The role of Ca++ on the regulation of the paracellular pathway permeability of the middle intestine of Anguilla anguilla was studied by measuring the transepithelial resistance and the dilution potential, generated when one half of NaCl in the mucosal solution was substituted iso-osmotically with mannitol, in various experimental conditions altering extracellular and/or intracellular calcium levels. We found that removal of Ca++ in the presence of ethylene glycol-bis(beta-aminoethyl ether) (EGTA) from both the mucosal and the serosal side, but not from one side only, reduced both the transepithelial resistance and the magnitude of the dilution potential. The irreversibility of this effect suggests a destruction of the organization of the junction in the nominal absence of Ca++. However a modulatory role of extracellular Ca++ cannot be excluded. The decrease of the intracellular Ca++ activity, produced by using verapamil to block the Ca++ entry into the cell, or by adding 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (hydrochloride) (TMB-8), an inhibitor of Ca++ release from the intracellular stores, reduced both the transepithelial resistance and the magnitude of the dilution potential, indicating a role of cytosolic Ca++ in the modulation of the paracellular permeability. However the rise of calcium activity produced by the Ca++ ionophore calcimycin (A23187) evoked an identical effect, suggesting that any change in physiological intracellular Ca++ activity alters the paracellular permeability.  相似文献   

17.
The Ca++ requirement for in vitro lymphocyte stimulation by lectins is well known and can be demonstrated by the use of Ca++ chelators. In this study, three Ca++ antagonists were examined for their effects on lymphocyte proliferation. [3H]-thymidine incorporation was employed to measure DNA synthesis in several systems. Stimulation and proliferation were achieved by the addition of one of the following: the mitogenic lectin concanavalin A (ConA); the combination of two co-mitogens, the calcium ionophore A23187 and the phorbol ester, 12-0-tetradecanoylphorbol-13-acetate (TPA), neither of which is mitogenic alone; or the non-mitogenic lectin, wheat germ agglutinin (WGA) with TPA. These mitogenic systems were tested for their sensitivity to the Ca++ channel blockers verapamil and nicardipine and the intracellular Ca++ antagonist TMB-8. We found that the ConA and WGA plus TPA treated cells were inhibited approximately 50% by 10 microM verapamil, nicardipine or TMB-8. The stimulation caused by A23187 and TPA was only inhibited by TMB-8 and nicardipine. The inhibitory effects caused by the Ca++ antagonists could not be reversed by the addition of exogenous Ca++ (0.1-1.5 mM), but were reversed by repeated washings in antagonist free media. Using TMB-8 we saw an apparent intracellular Ca++ dependence throughout the G1 phase. Previous studies using Ca++ chelators or Ca++ antagonists suggested an endpoint at about halfway through this period.  相似文献   

18.
Effects on Ca++ translocation and [Ca++]i were studied in dog thyro?d cell monolayers using both 45Ca++ efflux and the indicator quin-2. Carbamylcholine, a non hydrolysable analog of acetylcholine, through muscarinic receptors, and to a lesser extent TRH and PGF2 alpha increased both these parameters. [Ca++]i increased by 171, 100 and 75% respectively over a basal level of 66 +/- 17 nM (mean +/- SD). The response to carbamylcholine was biphasic. A transient increase in [Ca++]i was followed by a more sustained phase where the [Ca++]i was slightly higher than the basal level. Only the first phase was insensitive to extracellular Ca++ depletion. This phase is probably due to a release of Ca++ from an intracellular store. NaF also induced a sustained rise in [Ca++]i dependent on extracellular Ca++ and affected 45Ca++ efflux. Our data provide direct evidence of an implication of intracellular Ca++ in the response of dog thyro?d cells to all these agents.  相似文献   

19.
Tubulin was extracted from spindles isolated from embryos of the sea urchin Strongylocentrotus purpuratus and purified through cycles of temperature-dependent assembly and disassembly. At 37 degrees C, the majority of the cycle-purified spindle tubulin polymer is insensitive to free Ca++ at concentrations below 0.4 mM, requiring free Ca++ concentrations greater than 1 mM for complete depolymerization. However, free Ca++ at concentrations above 1 microM inhibits initiation of polymer formation without significantly inhibiting the rate of elongation onto existing polymer. At 15 degrees C and 18 degrees C, temperatures that are physiological for S. purpuratus embryos, spindle tubulin polymer is sensitive to free Ca++ at micromolar concentrations such that 3-20 microM free Ca++ causes complete depolymerization. Calmodulin purified from either bovine brain or S. purpuratus eggs does not affect the Ca++ sensitivity of the spindle tubulin at 37 degrees C, although both increase the Ca++ sensitivity of cycle-purified bovine brain tubulin. These results indicate that cycle-purified spindle tubulin and cycle-purified bovine brain tubulin differ significantly in their responses to calmodulin and in their Ca++ sensitivities at their physiological temperatures. They also suggest that, in vivo, spindle tubulin may be regulated by physiological levels of intracellular Ca++ in the absence of Ca++-sensitizing factors.  相似文献   

20.
The effect of synthetic (BHT, 2,2,5,7,8-pentamethyl-6-hydroxychroman) and natural (alpha-tocopherol) antioxidants on Ca++-transporting systems was compared in platelets, brain synaptosomes, and skeletal muscle sarcoplasmic reticulum. It was shown that synthetic antioxidants, in contrast to alpha-tocopherol, induced Ca++-release manifested in platelet aggregation, stimulation of 5-hydroxytryptamine release by synaptosomes, synaptosome depolarization and inhibition of Ca++-transport and Ca++-ATPase activity in the sarcoplasmic reticulum. The disturbances of Ca++-homeostasis induced by synthetic antioxidants are considered as molecular mechanisms of complications encountered upon their application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号