首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interfacial properties of cell culture media with cell-protecting additives   总被引:1,自引:0,他引:1  
In an effort to identify key rheological properties that contribute to cell protection against shear damage, we have measured surface shear and dilatationai viscosities, dynamic surface tension, foaminess, and foam stability for media containing cell-protecting additives. In a companion article,(18) we found that cell-to-bubble attachment was decreased in media containing Methocel, Pluronic F68, or polyvinyl alcohol (PVA). In medium containing polyethylene glycol (PEG) or potyvinyl-pyrrolidone (PVP), attachment was increased. PEG, PVP, serum (FBS), and serum albumin (BSA) increased the surface viscosity of the air/medium surface (thus, producing a more rigid interface), whereas F68 and PVA lowered it greatly. Foaming experiments showed that Methocel, PEG, PVA, and F68 decreased the foam half-life while FBS, BSA, and PVP were foam stabilizers. Interestingly, the foam stability of CHO cell suspensions decreased significantly for cell concentrations higher than ca. 2 x 10(6) cells/mL. Nonviable CHO cells reduced foam stability further. Dynamic surface tension values of the media tested were found significantly differentfrom their static surface tension values. The interfacial properties measured and the results presented in the companion study suggest that the additives that lower dynamic surface tension the most (Methocel, F68, and PVA) correlate well with reduced cell-to-bubble attachment, and thus, cell protection. Reduced dynamic surface tension with these additives implies faster surfactant adsorption, mobile interfaces, lower surface viscosity, and foam destabilization. Because PEG and PVP resulted in increased cell-to-bubble attachment and had different interfacial properties, a different mechanism (compared with Methocel, PVP, and F68) is apparently responsible for their protective effect. Finally, cell protection offered by FBS and BSA is attributed to the foam stabilization properties provided by these additives. (c) 1995 John Wiley & Sons Inc.  相似文献   

2.
Flow cytometry was used to examine the effect of hydrodynamic forces in a stirred tank bioreactor on the CD13 and CD33 receptor surface content of HL60 (human promyelocytic leukemia) cells. A step increase in agitation rate from 80 to 400 rpm reduced the HL60 cell apparent growth rate and increased the CD13 receptor surface content per cell, on average, by 95%. In contrast, this step increase in agitation rate to 400 rpm decreased the CD33 receptor surface content per cell, on average, by 10%. The protective effects of 0.1% Methocel A15LV, polyethylene glycol (PEG), and polyvinyl alcohol (PVA) on CD13 and CD33 receptor surface content were examined under agitation at 300 rpm in parallel 2 L bioreactor runs. The average CD33 receptor surface content was unaffected by the presence of Methocel A15LV or PEG, while PVA had a slight protective effect. In contrast, in terms of CD13 receptor content, HL60 cells agitated at 300 rpm with Methocel A15LV, PEG, or PVA behaved like cells agitated at 80 rpm with no media additives (McDowell and Papoutsakis, 1998). That is, Methocel A15LV, PEG, and PVA prevented the transduction of mechanical forces which affect CD13 cell content. HL60 cells cultured with 0.1% A15LV, PEG or PVA under conditions of mild agitation (60 rpm) in spinner flasks exhibited glucose consumption and lactate production rates that were approximately 20% lower than values of cultures containing no additive. Under conditions of agitation at 300 rpm in the 2 L bioreactor, the presence of A15LV, PEG, and PVA reduced the HL60 glucose consumption and lactate production rates by approximately 50%. Thus, media additives can dramatically reduce lactate accumulation in agitated bioreactors due to cell growth, in addition to providing protection from cellular injury.  相似文献   

3.
Bursting bubbles are thought to be the dominant cause of cell death in sparged animal or insect cell cultures. Cells that die during the bubble burst can come from three sources: cells suspended near the bubble; cells trapped in the bubble lamella; and cells that attached to the rising bubble. This article examines cell attachment to rising bubbles using a model in which cell attachment depends on cell radius, bubble radius, and cell–bubble attachment time. For bubble columns over 1 m in height and without protective additives, the model predicts significant attachment for 0.5‐ to 3‐mm radius bubbles, but no significant attachment in the presence of protective additives. For bubble columns over 10 cm in height, and without protective additives, the model predicts significant attachment for 50‐ to 100‐μm radius bubbles, but not all protective additives prevent attachment for these bubbles. The model is consistent with three sets of published data and with our experimental results. Using hybridoma cells, serum‐free medium with antifoam, and 1.60 ± 0.05 mm (standard error) radius bubbles, we measured death rates consistent with cell attachment to rising bubbles, as predicted by the model. With 1.40 ± 0.05 mm (SE) radius bubbles and either 0.1% w/v Pluronic‐F68 or 0.1% w/v methylcellulose added to the medium, we measured death rates consistent with no significant cell attachment to rising bubbles, as predicted by the model. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 468–478, 1999.  相似文献   

4.
Two identical bioreactors run in parallel were used to examine the phenomenological characteristics of two additives, polyethylene glycol (PEG) and polyvinyl alcohol (PVA), used as protectants against fluid-mechanical cell damage. Cell-protecting ability was evaluated by comparing apparent cell growth rates of freely suspended CRL-8018 hybridoma cells cultured in serum-free medium under surface aerated conditions whereby cell damage is due to bubble entrainment and breakup. PEG of various molecular weights was used to determine whether the size of the polymer has significant effects on PEG's cell-protecting capabilities. All the PEG's with molecular weights larger than 1400 showed similar protective effects. The effect of PEG concentration was then evaluated and results showed that concentrations greater than 0.05% w/v did not significantly improve the cell-protecting properties. Direct comparisons made between the PVA, PEG, and pluronic F68 as cell protectants showed that PEG protected cells better than F68 and that PVA provided even better protection than PEG. The mechanism of protection, fluid-mechanical or biological in nature, was examined by growing the cells in additive from the beginning of the experiment (long-term exposure), or adding the additive after the cells had been agitated at rates detrimental to the cells (short-term exposure). In agreement with results reported previously on PEG and F68, fast-acting protection was seen. This implies a fluid-mechanical rather than a biological protection mechanism. In an attempt to correlate interfacial properties of the resulting media with shear protection, interfacial tension and viscosity measurements of all the media were made. On the basis of these measurements, we find no definitive correlations for evaluating these additives' cell-protecting capabilities.  相似文献   

5.
Chalmers JJ 《Cytotechnology》1996,20(1-3):163-171
Conclusions While insect cells can be easily damaged in bioreactors as a result of hydrodynamic forces, it is also relatively easy to prevent this damage. Of several possible damage mechanisms, the best understood and preventable is the attachment of cells to gas-liquid interfaces and the subjection of these attached cells to the hydro-dynamic forces and/or physical forces associated with these interfaces. For example, cells attached to gas bubbles in a bioreactor can be transported into the foam layer where they are physically removed from the cell suspension, or they can be killed when the gas bubble they are attached to ruptures at the medium-air interface at the top of the bioreactor. The easiest method to prevent this damage is through the use of specific surface active compounds, such as Pluronic F-68 or Methocel E-50 which prevent the cells from attaching to the gas-medium interface.  相似文献   

6.
Lee TH  Lin SY 《Biopolymers》2011,95(11):785-791
The effects of different surfactants on the conformational stability and structural similarity of salmon calcitonin (sCT) in aqueous solution and lyophilized forms were investigated by using microscopic Fourier transform infrared (FTIR) spectroscopy with second-derivative spectral analysis. Six surfactants, HCO-60, sodium dodecyl sulfate (SDS), Tween 80, PEG 400, Pluronic 68, and F127 were selected. The sCT aqueous solution with or without different surfactants was, respectively, incubated at 40°C for up to 35 h. sCT films were casted on the CaF(2) plates and IR spectra were collected as a function of incubation time. Second derivative analysis showed that the native sCT having a major α-helical structure was gradually changed to the combination of α-helix, random coil, and β-sheet conformations in aqueous solution at 40°C. Similar conformational changes with delayed β-sheet formation were obtained for sCT after co-incubation with all the surfactants except Pluronic F68. When the native sCT was freeze-dried alone, a marked conformational alteration was found as illustrated by a poor spectral correlation coefficient (r) value of 0.823 as compared to that of the unlyophilized native sCT. This r value was significantly deviated from 1, strongly indicating the influence of lyophilization stress on the surfactant-free sCT. The r value for sCT after lyophilizing with HCO-60, Pluronic F127, PEG 400, or Pluronic F68 was >0.9, suggesting the possible stabilization of these surfactants in the lyophilization process. The sCT sample after lyophilizing with Pluronic F68 showed a highest r value (>0.968), indicating the most optimal stabilization effect of Pluronic F68 for sCT sample via lyophilization. Pluronic F68 was found to be the preferential surfactant for preventing the secondary structure changes in aqueous solution at 40°C as well as in lyophilized powder.  相似文献   

7.
The relative sensitivity of two insect cell lines to laminar shear stress was determined, and the protective effect of polymers added to the growth media of two insect cell lines, Trichoplusia ni (TN-368) and Spodoptera frugiperda (SF-9), was evaluated. TN-368 and SF-9 cells were found to be equally sensitive to laminar shear stress. Methylcellulose [0.5% (w/v) Dow E4M Methocel] and dextran [4.5% (w/v)] increased the resistance of suspended cells to lysis due to laminar shear stress by factors of up to 76 and 28, respectively, compared to cells in media without additives. It was observed that the protective effect of Pluronic F-68 was concentration-dependent: 0.2% and 0.3% (w/v) F-68 increased the resistance of SF-9 cells to shear stress by factors of 15 and 42, respectively. However, increasing the concentration to 0.5% did not significantly increase the cells' resistance compared to 0.3% (w/v). F-68 at 0.2% only increased the resistance of TN-368 cells by a factor of 6. It is believed that the protection is a result of the polymer adsorbing to the cell membrane. None of the polymer additives tested had a significant effect on SF-9 or TN-368 growth rate.  相似文献   

8.
An assay was developed to measure the hydrophobic interactions of commonly used mammalian cell lines grown in culture. The assay depends on the loss of cells from an aqueous suspension following vortexing with a hydrophobic oil phase. This allowed the determination of a hydrophobicity index, which was significantly higher for Chinese Hamster Ovary (CHO) cells than either a murine hybridoma (CC9C10) or a myeloma (SP2/0). This suggests that CHO cells may have a higher intrinsic cell surface hydrophobicity. The assay was also used to study the effect of different additives on the hydrophobic interactions of the cells. A dose-dependent effect was shown for the non-ionic surfactant, Pluronic F68, in reducing the hydrophobic interaction of the CHO cells. However, the pattern of the decrease due to Pluronic F68 was different for each cell line. A higher concentration of Pluronic F68 (0.2%) was required to eliminate the hydrophobic interactions of CHO cells compared to either myelomas or hybridomas, where only 0.05% was required to reduce these interactions to a similar level. Several oils were found suitable for this assay although canola oil maximized the sensitivity of the measured changes. The assay may be useful in monitoring changes in the hydrophobic interactions of mammalian cells during growth in bioreactors. This may be important in optimizing the concentration of cell protectants such as Pluronic F68 in agitated cultures.  相似文献   

9.
The protective effects of polymer additives, including a group of viscosity-enhancing polymer poly-γ-glutamic acid (γPGA; 10, 50, and 500?kDa) and surface-active polymer Pluronic F68, on Chinese hamster ovary cells against damage due to shear stress were investigated in shake-flask cultures. The level of protection was dependent upon the molecular weight of γPGA and its concentration. When 0.05 or 0.075?% of 500?kDa γPGA was added, the cell growth and viability were almost equal to those of Pluronic F68 supplementation and were much higher than those of the control without additives. For the first time, we show that γPGA is another environmentally-friendly medium additive that can be used in place of Pluronic F68.  相似文献   

10.
Production of sago starch-based foam involved mixing of sago starch with polyvinyl alcohol (PVA) or polyvinyl pyrrolidone (PVP) followed by preparation of electron beam irradiated sago starch/PVA and sago starch/PVP sheets and expanding them in a microwave. The results revealed that good foams with high linear expansion and closed cell structure can be produced from 25:15 of sago starch:PVA and 30:10 of sago starch:PVA blends prepared at 80 °C and electron beam irradiated at 15 kGy or 10 kGy for the cross-linking process. An increment of sago starch in the blends enhanced the linear expansion of the foams produced. Change in the blend morphology was observed when it was exposed to higher irradiation doses as electron beam irradiation induced the cross-linking in PVA and PVP, and leaching of amylose and amylopectin from the starch granules. Sago starch/PVA blend is more suitable for foam production because it produced flexible and glossy foam as compared to sago starch/PVP blend which produced very rigid foam.  相似文献   

11.
Foam formation and the subsequent cell damage/losses in the foam layer were found to be the major problems affecting cell growth and monoclonal antibody (MAb) production in stirred and sparged bioreactors for both serum-supplemented and serum-free media. Surfactants in the culture media had a profound effect on cell growth by changing both the properties of bubbles and the qualities of foam formed. Comparable cell growth and MAb production in sparged bioreactors and in stirred and surface-aerated control cultures were observed only in Pluronic F-68 containing culture media. In media devoid of Pluronic F-68, cells became more sensitive to direct bubble aeration in the presence of antifoam agent which was used to suppress foam formation. Compared with serum-supplemented medium, more severe cell damage effects were observed in serum-free medium. In addition, serum-free medium devoid of cells was partially degraded under continuous air sparging. The mechanism of this damage effect was not clear. Pluronic F-68 provided protective effect to cells but not to the medium. A theoretical model based on the surface active properties of Pluronic F-68 was proposed to account for its protective effect on cell growth. Optimum media surfactant composition in terms of maximum cell growth and minimum foam formation was proposed for stirred and sparged animal cell bioreactor.  相似文献   

12.
It is proposed that when cells are either attached to, or very near, a rupturing bubble, the hydrodynamic forces associated with the rupture are sufficient to kill the cells. Four types of experiments were conducted to quantify the number and location of these killed cells. We determined: (1) the number of cells killed as a result of a single, 3.5-mm bubble rupture; (2) the number and viability of cells in the upward jet that results when a bubble ruptures; (3) the number of cells on the bubble film; and (4) the fate of cells attached to the bubble film after film rupture. All experiments were conducted with Spodoptera frugiperda (SF-9) insect cells, in TNM-FH and SFML medium, with and without Pluronic F-68. Experiments indicate that approximately 1050 cells are killed per single, 3.5-mm bubble rupture in TNM-FH medium and approximately the same number of dead cells are present in the upward jet. It was also observed that the concentration of cells in this upward jet is higher than the cell suspension in TNM-FH medium without Pluronic F-68 by a factor of two. It is believed that this higher concentration is the result of cells adhering to the bubble interface. These cells are swept up into the upward jet during the bubble rupture process. Finally, it is suggested that a thin layer around the bubble containing these absorbed cells is the "hypothetical killing volume" presented by other researchers. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
Jianyong Wu 《Cytotechnology》1996,22(1-3):103-109
Animal cells in suspension culture can suffer severe mechanical damage from bursting gas bubbles or other hydrodynamic force sources. Certain chemical additives in the culture media, particularly some surface-active chemicals, can effectively protect animal cells against such damage. Previously we proposed that the protective effect is associated with the adsorption of the additives in the cell membrane through hydrophobic binding of the surface-active molecules to the membrane. Adsorption of the additives to the cell membrane may lead to decreased hydrophobicity of the cell surface, thus eliminating cell adhesion to bubbles and reducing cell damage from bursting bubbles. In this study, we measured the hydrophobicity of two insect cell lines based on cell adhesion to hydrocarbon phase and its influence by surface-active chemicals, Pluronic F68, a methylcellulose and a polyethylene glycol. The experimental results showed strong support for the aforecited cell protection mechanism.  相似文献   

14.
W. S. Tan  Y. L. Chen 《Cytotechnology》1994,15(1-3):321-328
Previous work by the authors and others has shown that suspended animal cell damage in bioreactors is caused by cell-bubble interactions, regardless whether the bubbles are from bubble entrainment or direct gas sparging. As approach to measure the adsorptivity of animal cells to bubbles, a modified batch foam fractionation technique has been developed in this work and proven to be applicable. By using this technique, the number of cells adsorbed per unit bubble surface area and the adsorption coefficients have been measured to quantify hybridoma cell-bubble interactions, and the prevetive effects of serum and Pluronic F68 on these interactions. It was demonstrated quantitatively that the hybridoma cells adhere to bubbles spontaneously and significant numbers exist in the foam, and that both the serum and Pluronic F68 provide strong prevention to these cell-bubble interactions. The results obtained provide criteria for bioreactor operation and medium formulation to prevent cell-bubble interactions and cell damage in the culture processes.Abbreviations NBCS new born calf serum - SFM serum-free medium  相似文献   

15.
Human embryonic stem cells (hESCs) hold great promise for regenerative medicine and transplantation therapy due to their self-renewal and pluripotent properties. We report that 2D thin film scaffolds composed of biocompatible polymer grafted carbon nanotubes (CNTs), can selectively differentiate human embryonic stem cells into neuron cells while maintaining excellent cell viability. According to fluorescence image analysis, neuron differentiation efficiency of poly(acrylic acid) grafted CNT thin films is significant greater than that on poly(acrylic acid) thin films. When compared with the conventional poly-l-ornithine surfaces, a standard substratum commonly used for neuron culture, this new type thin film scaffold shows enhanced neuron differentiation. No noticeable cytotoxic effect difference has been detected between these two surfaces. The surface analysis and cell adhesion study have suggested that CNT-based surfaces can enhance protein adsorption and cell attachment. This finding indicates that CNT-based materials are excellent candidates for hESCs’ neuron differentiation.  相似文献   

16.
Pluronic F-68, PEG 8000, or PEG 20 000 added to cell suspension cultures of transgenic Nicotiana tabacum promoted cell growth and the production of the recombinant murine granulocyte macrophage-colony stimulating factor (mGM-CSF) in a 5-l stirred tank bioreactor. The specific growth rates were enhanced from 0.27 d–1 to 0.47 d–1, 0.37 d–1 and 0.4 d–1 when Pluronic F-68, PEG 8000, or PEG 20 000 was added, respectively. The maximum cell density was also increased most to 13.6 g l–1 when Pluronic F-68 was added (11.3 g l–1 in the control culture). In terms of mGM-CSF production, PEG 8000 gave the greatest stimulation and with 2 g PEG 8000 l–1, mGM-CSF increased from 1.6 to 6.6 ng ml–1.  相似文献   

17.
It is well known that bubble rupture has a detrimental effect on mammalian cells. As a result, Pluronic F-68 (PF-68), a nonionic surfactant, is commonly used to reduce bubble-associated cell damage in sparged bioreactors. While PF-68 is currently effective, there is a concern with respect to its decrease in effectiveness as cell concentrations increase (Ma et al., 2004, Biotechnol Prog 20:1183-1191). In addition, having more than one effective surfactant for cell culture is also highly desirable. Given the empirical nature in which PF-68 was initially discovered as a cell culture additive, a structure-performance study of small molecule surfactants, a distinct group which have been previously investigated for other purposes, was performed in an attempt to find a replacement for PF-68. In this study, a generic platform was established to initially screen both the type and concentration of these surfactants for cytotoxicity. Promising candidates where then evaluated for their ability to rapidly lower the surface tension (dynamic surface tension) of culture media and their ability to prevent cell-bubble attachment in a specially developed bubble creation and collection system. Several promising small- molecule surfactants, and their effective concentration, were identified, which can reduce cell-bubble attachment efficiently without being harmful to cells.  相似文献   

18.
Various polymers were used as transfection factors for small interfering RNA (siRNA) to effectively suppress human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) gene in transgenic rice cells. Five kinds of polymers (PEI, PVA, PVP, and 8 and 20 kDa PEGs) were applied for delivery of siRNA with lipofectamine used as a control. In the cytotoxicity test, all polymers except 8 kDa PEG showed nontoxicity in relation to cell viability. For transfection efficiency, polyplexes composed of siRNA and PEG (20 kDa) did not significantly reduce production of intracellular hCTLA4Ig. On the other hand, siRNA + PEI polyplexes showed the most effective suppression efficiency with regards to production of intracellular hCTLA4Ig among all other polyplexes (PVA, PVP, and PEG (8 kDa)). Effects of molecular weight ratios of siRNA:PEI were investigated to obtain optimal transfection efficiency and avoid excessive damage to cells. PEI-based polyplexes with a 1:10 ratio of siRNA:PEI reduced production of intracellular hCTLA4Ig up to 70.6% without alteration of cell viability. These results demonstrate that PEI-based polyplexes are easy to prepare, inexpensive, non-toxic, and effective to deliver siRNA to transgenic plant cell cultures.  相似文献   

19.
We describe a method by which the degree of bubble saturation can be determined by measuring the velocity of single bubbles at different heights from the bubble source in pure water containing increasing concentrations of surfactants. The highest rising velocities were measured in pure water. Addition of surfactants caused a concentration-dependent and height-dependent decrease in bubble velocity; thus, bubbles are covered with surfactants as they rise, and the distance traveled until saturation is reached decreases with increased concentration of surfactant. Pluronic F68 is a potent effector of bubble saturation, 500 times more active than serum. At Pluronic F68 concentrations of 0.1% (w/v), bubbles are saturated essentially at their source. The effect of bubble saturation on the interactions between animal cells and gas bubbles was investigated by using light microscopy and a micromanipulator. In the absence of surfactants, bubbles had a killing effect on cells; hybridoma cells and Chinese hamster ovary (CHO) cells were ruptured when coming into contact with a bubble. Bubbles only partially covered by surfactants adsorbed the cells. The adsorbed cells were not damaged and they also could survive subsequent detachment. Saturated bubbles, on the other hand, did not show any interactions with cells. It is concluded that the protective effect of serum and Pluronic F68 in sparged cultivation systems is based on covering the medium-bubble interface with surfaceactive components and that cell death occurs either after contact of cells with an uncovered bubble or by adsorption of cells through partially saturated bubbles and subsequent transport of cells into the foam region. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
Pluronic F68 is one of the most used shear protecting additives in cell culture cultivations. It is well known from literature that such surface‐active surfactants lower the surface tension at the gas‐liquid interface, which influences the mass transfer. In this study, the effect of Pluronic F68 on oxygen mass transfer in aqueous solutions was examined. Therefore, the gassing in/gassing out method and bubble size measurements were used. At low concentrations of 0.02 g/L, a 50% reduction on mass transfer was observed for all tested spargers and working conditions. An explanation of the observed effects by means of Higbie's penetration or Dankwerts surface renewal theory was applied. It could be demonstrated that the suppressed movement of the bubble surface layer is the main cause for the significant drop down of the kLa‐values. For Pluronic F68 concentrations above 0.1 g/L, it was observed that it comes to changes in bubble appearance and bubble size strongly dependent on the sparger type. By using the bubble size measurement data, it could be shown that only small changes in mass transfer coefficient (kL) take place above the critical micelle concentration. Further changes on overall mass transfer at higher Pluronic F68 concentrations are mainly based on increasing of gas holdup and, more importantly, by increasing of the surface area available for mass transfer. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1278–1288, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号