首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vascular endothelial growth factor (VEGF) displays neurotrophic and neuroprotective activities, but the mechanisms underlying these effects have not been defined. Neuropilin-1 (NP-1) is a receptor for VEGF165 and placental growth factor-2 (PlGF-2), but the role of NP-1 in VEGF-dependent neurotrophic actions is unclear. Dorsal root ganglion (DRG) neurons expressed high levels of NP-1 mRNA and protein, much lower levels of KDR, and no detectable Flt-1. VEGF165 and PlGF-2 promoted DRG growth cone formation with an effect similar to that of nerve growth factor, whereas the Flt-1-specific ligand, PlGF-1, and the KDR/Flt-4 ligand, VEGF-D, had no effect. The chemorepellent NP-1 ligand, semaphorin 3A, antagonized the response to VEGF and PlGF-2. The specific KDR inhibitor, SU5614, did not affect the anti-chemorepellent effects of VEGF and PlGF-2, whereas a novel, specific antagonist of VEGF binding to NP-1, called EG3287, prevented inhibition of growth cone collapse. VEGF stimulated prostacyclin and prostaglandin E2 production in DRG cultures that was blocked by inhibitors of cyclooxygenases; the anti-chemorepellent activities of VEGF and PlGF-2 were abrogated by cyclooxygenase inhibitors, and a variety of prostacyclin analogues and prostaglandins strikingly inhibited growth cone collapse. These findings support a specific role for NP-1 in mediating neurotrophic actions of VEGF family members and also identify a novel role for prostanoids in the inhibition of neuronal chemorepulsion.  相似文献   

3.
c-Fes plays pivotal roles in angiogenic cellular responses of endothelial cells. Here we examined the role of c-Fes in vascular endothelial growth factor-A (VEGF-A)-mediated signaling pathways in endothelial cells. We introduced either wild-type or kinase-inactive c-Fes in porcine aortic endothelial (PAE) cell lines, which endogenously express VEGF receptor (VEGFR)-1, and PAE cells ectopically expressing VEGFR-2 (denoted KDR/PAE cells) and generated stable cell lines. VEGF-A induced autophosphorylation of c-Fes only in KDR/PAE cells, suggesting that VEGFR-2 was required for its activation. Expression of kinase-inactive c-Fes failed to demonstrate dominant negative effect on VEGF-A-induced chemotaxis and capillary morphogenesis. Phosphoinositide 3-kinase (PI3-kinase) was activated in KDR/PAE cells and c-Fes contributed to this process in a kinase activity-dependent manner. However, VEGFR-2, insulin receptor substrate-1, and c-Src were also involved in VEGF-A-induced activation of PI3-kinase, resulting in the compensation in cells expressing kinase-inactive c-Fes. Interestingly, overexpression of wild-type c-Fes in PAE cells induced VEGF-A-independent capillary morphogenesis. Considered collectively, VEGF-A activated PI3-kinase partly through c-Fes and increase in c-Fes kinase activity enhanced capillary morphogenesis by yet unknown signaling pathways.  相似文献   

4.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

5.
Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65-75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.  相似文献   

6.
Previous findings suggest that both the Tat polypeptide encoded by HIV-1 and Tat-derived peptides can induce angiogenesis via activation of the KDR receptor for Vascular Endothelial Growth Factor (VEGF). We identified 20 amino acids and 12 amino acid peptides corresponding to the cysteine-rich and basic domains of HIV-1 Tat which inhibited (125)I-VEGF(165) binding to KDR and neuropilin-1 (NP-1) receptors in endothelial cells. Cysteine-rich and basic Tat peptides inhibited VEGF-induced ERK activation and mitogenesis in endothelial cells, and inhibited angiogenesis in vitro at concentrations similar to those which inhibited VEGF receptor binding. These peptides also inhibited proliferation, angiogenesis, and ERK activation induced by basic fibroblast growth factor with similar potency and efficacy. Surprisingly, we found that both cysteine-rich and basic domain Tat peptides strikingly induced apoptosis in endothelial cells, independent of their effects on VEGF and bFGF. Furthermore, we found no evidence for direct biological effects of recombinant Tat on VEGF receptor binding, ERK activation, endothelial cell survival, or mitogenesis. These findings demonstrate novel properties of Tat-derived peptides and indicate that their major effect in endothelial cells is apoptosis independent of specific inhibition of VEGF receptor activation.  相似文献   

7.
Neuropilin-1 (NRP-1), a non-tyrosine kinase receptor of vascular endothelial growth factor-165 (VEGF165), was found expressed on endothelial and some tumor cells. Since its overexpression is correlated with tumor angiogenesis and progression, the targeting of NRP-1 could be a potential anti-cancer strategy. To explore this hypothesis, we identified a peptide inhibiting the VEGF165 binding to NRP-1 and we tested whether it was able to inhibit tumor growth and angiogenesis. To prove the target of peptide action, we assessed its effects on binding of radiolabeled VEGF165 to recombinant receptors and to cultured cells expressing only VEGFR-2 (KDR) or NRP-1. Antiangiogenic activity of the peptide was tested in vitro in tubulogenesis assays and in vivo in nude mice xenotransplanted in fat-pad with breast cancer MDA-MB-231 cells. Tumor volumes, vascularity and proliferation indices were determined. The selected peptide, ATWLPPR, inhibited the VEGF165 binding to NRP-1 but not to tyrosine kinase receptors, VEGFR-1 (flt-1) and KDR; nor did it bind to heparin. It diminished the VEGF-induced human umbilical vein endothelial cell proliferation and tubular formation on Matrigel and in co-culture with fibroblasts. Administration of ATWLPPR to nude mice inhibited the growth of MDA-MB-231 xenografts, and reduced blood vessel density and endothelial cell area but did not alter the proliferation indices of the tumor. In conclusion, ATWLPPR, a previously identified KDR-interacting peptide, was shown to inhibit the VEGF165 interactions with NRP-1 but not with KDR and to decrease the tumor angiogenesis and growth, thus validating, in vivo, NRP-1 as a possible target for antiangiogenic and antitumor agents.  相似文献   

8.
VEGF-A165 plays a central role in neovascularization. The biological activities of VEGF-A165 are largely mediated through KDR. VEGF-A165 also binds to cellular coreceptors, neuropilin-1 (NP-1), and heparin, via its C-terminal domain, resulting in functional modulation. Parapoxvirus-encoded VEGFs (PV-VEGFs), which recognize KDR, possess basic amino acid clusters in their C-terminal regions. Some PV-VEGFs may interact with NP-1; however, the NP-1- and heparin-binding properties have not been fully characterized. Here, we demonstrate that the heparin- and NP-1-binding region of PV-VEGFs is located in its C-terminal tail. Furthermore, the two arginine residues adjacent to the C-terminus greatly contribute to both interactions.  相似文献   

9.
VEGF induces pathological angiogenesis and is an important target for the development of novel antiangiogenic molecules. In this study, we tested synthetic peptides based on the sequence of VEGF(189) for their ability to inhibit VEGF receptor binding and biological responses. We identified 12-amino acid peptides derived from exon 6 that inhibited VEGF binding to HUVECs, VEGF-stimulated ERK activation, and prostacyclin production. These peptides inhibited VEGF-induced mitogenesis, migration, and VEGF-dependent survival of endothelial cells, but caused no increase in apoptosis in the absence of VEGF. Exon 6-encoded peptides also caused a marked inhibition of VEGF-induced angiogenesis in vitro. Studies of effects of peptides on cross-linking of VEGF to its receptors and on binding of VEGF to porcine aortic endothelial cells expressing either KDR or neuropilin-1 showed that exon 6-encoded peptides effectively blocked the interaction of VEGF with both receptors. Exon 6-derived peptides caused release of bFGF from endothelial cells but inhibited bFGF-dependent ERK activation, cell proliferation and angiogenesis. Our findings indicate that VEGF exon 6-encoded peptides inhibit VEGF-induced angiogenesis, at least in part through inhibition of VEGF binding to KDR. In addition, exon 6-encoded peptides are also effective inhibitors of bFGF-mediated angiogenesis.  相似文献   

10.
We have previously shown that carboxymethyl dextran benzylamide (CMDB7), a heparin-like molecule, inhibits the growth of tumors xenografted in nude mice, angiogenesis, and metastasis by altering the binding of angiogenic growth factors, including platelet-derived growth factor, transforming growth factor beta, and fibroblast growth factor 2, to their specific receptors. In this study, we explore the effect of CMDB7 on the most specific angiogenic growth factor, vascular endothelial growth factor 165 (VEGF(165)). We demonstrate here that CMDB7 inhibits the mitogenic effect of VEGF(165) on human umbilical vein endothelial cells (HUV-ECs) by preventing the VEGF(165)-induced VEGF receptor-2 (KDR) autophosphorylation and consequently a specific intracellular signaling. In competition experiments, the binding of (125)I-VEGF(165) to HUV-ECs is inhibited by CMDB7 with an IC(50) of 2 microm. Accordingly, CMDB7 inhibits the cross-linking of (125)I-VEGF(165) to the surface of HUV-ECs, causing the disappearance of both labeled complexes, 170-180 and 240-250 kDa. We show that CMDB7 increases the electrophoretic mobility of VEGF(165), thus evidencing formation of a stable complex with this factor. Moreover, CMDB7 reduces the (125)I-VEGF(165) binding to coated heparin-albumin and prevents a heparin-induced increase in iodinated VEGF(165) binding to soluble (125)I-KDR-Fc chimera. Concerning KDR, CMDB7 has no effect on (125)I-KDR-Fc electrophoretic migration and does not affect labeled KDR-Fc binding to coated heparin-albumin. In the presence of VEGF(165), (125)I-KDR-Fc binding to heparin is enhanced, and under these conditions, CMDB7 interferes with KDR binding. These data indicate that CMDB7 effectively inhibits the VEGF(165) activities by interfering with heparin binding to VEGF(165) and VEGF(165).KDR complexes but not by direct interactions with KDR.  相似文献   

11.
The role of the vascular endothelial growth factor receptor-1 (VEGFR-1) in endothelial cell function is unclear. We have previously identified four tyrosine phosphorylation sites in the C-terminal tail of this receptor. We now show that the wild type VEGFR-1 expressed in porcine aortic endothelial (PAE/VEGFR-1) cells was able to transduce signals for increased DNA synthesis and proliferation. Tyrosine phosphorylation of phospholipase Cgamma (PLCgamma), tyrosine phosphatase SHP-2, Crk, and extracellular regulated kinases 1 and 2 (Erk1/2) was registered in response to VEGF-A treatment of the PAE/VEGFR-1 cells. VEGFR-1 mutated at Y1213, Y1242, and Y1333 were constructed and expressed in PAE cells, to the same level as that of PAE/VEGFR-1 cells. The affinities of the wild type and mutated receptors for VEGF-A(165) binding were similar. The mutated VEGFR-1 Y1213F expressed in PAE cells was kinase inactive. PAE cells expressing the mutated VEGFR-1 Y1242F and Y1333F receptors mediated increased tyrosine phosphorylation of PLCgamma in response to VEGF-A stimulation. However, these two mutant VEGFR-1 failed to mediate increased mitogenesis and were unable to stimulate increased tyrosine phosphorylation of SHP-2, Crk, and Erk1/2, indicating that the mutations lead to a perturbation in VEGF-A-induced signal transduction.  相似文献   

12.
Vascular endothelial growth factor (VEGF165) exhibits multiple effects via the activation of two distinct endothelial receptor tyrosine kinases: Flt-1 (fms-like tyrosine kinase-1) and KDR (kinase insert domain-containing receptor). KDR shows strong ligand-dependent tyrosine phosphorylation in comparison with Flt-1 and mainly mediates the mitogenic, angiogenic, and permeability-enhancing effects of VEGF165. Here we show the isolation of two VEGFs from viper venoms and the characterization of their unique biological properties. Snake venom VEGFs strongly stimulated proliferation of vascular endothelial cells in vitro. Interestingly, the maximum activities were almost twice that of VEGF165. They also induced strong hypotension on rat arterial blood pressure compared with VEGF165 in vivo. A receptor binding assay revealed that snake venom VEGFs bound to KDR-IgG with high affinity (Kd = approximately 0.1 nm) as well as to VEGF165 but did not interact with Flt-1, Flt-4, or neuropilin-1 at all. Our data clearly indicate that snake venom VEGFs act through the specific activation of KDR and show potent effects. Snake venom VEGFs are a highly specific ligand to KDR and form a new group of the VEGF family.  相似文献   

13.
Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers   总被引:5,自引:0,他引:5  
Vascular endothelial growth factor (VEGF-A) exerts its effects through receptor tyrosine kinases VEGF receptor-1 (VEGFR-1) and VEGFR-2, which are expressed on most endothelial cell types in vitro and in vivo. We have examined VEGF-A-induced signal transduction in porcine aortic endothelial (PAE) cells individually expressing VEGFR-1 or VEGFR-2, and cells co-expressing both receptor types. We show that VEGF-A-stimulated PAE cells co-expressing VEGFR-1 and -2 contain receptor heterodimers. VEGF-A-stimulation of all three cell lines (expressing VEGFR-1, -2 and -1/2) resulted in signal transduction with different efficiencies. Thus, tyrosine phosphorylation of phospholipase Cgamma, and accumulation of inositol polyphosphates were efficiently transduced in the VEGFR-1/2 cells whereas cells expressing VEGFR-1 responded poorly in these assays. In contrast, VEGF-A-induced activation of phosphoinositide 3-kinase and induction of Ca2+ fluxes were transduced well by VEGFR-1 and VEGFR-2 homo- and heterodimers. The pattern of Ca2+ fluxes was unique for each type of VEGF receptor dimer. Our data show that signal transduction induced by VEGF-A is transduced in distinct manners by homo- and heterodimers of VEGF receptors.  相似文献   

14.
Endostatin, a fragment of collagen XVIII, is a potent anti-angiogenic protein, but the molecular mechanism of its action is not yet clear. We examined the effects of endostatin on the biological and biochemical activities of vascular endothelial growth factor (VEGF). Endostatin blocked VEGF-induced tyrosine phosphorylation of KDR/Flk-1 and activation of ERK, p38 MAPK, and p125(FAK) in human umbilical vein endothelial cells. Endostatin also inhibited the binding of VEGF(165) to both endothelial cells and purified extracellular domain of KDR/Flk-1. Moreover, the binding of VEGF(121) to KDR/Flk-1 and VEGF(121)-stimulated ERK activation were blocked by endostatin. The direct interaction between endostatin and KDR/Flk-1 was confirmed by affinity chromatography. However, endostatin did not bind to VEGF. Our findings suggest that a direct interaction of endostatin with KDR/Flk-1 may be involved in the inhibitory function of endostatin toward VEGF actions and responsible for its potent anti-angiogenic and anti-tumor activities in vivo.  相似文献   

15.
We previously reported that vascular endothelial growth factor (VEGF)-A(165) inflammatory effect is mediated by acute platelet-activating factor synthesis from endothelial cells upon the activation of VEGF receptor-2 (VEGFR-2) and its coreceptor, neuropilin-1 (NRP-1). In addition, VEGF-A(165) promotes the release of other endothelial mediators including nitric oxide and prostacyclin (PGI(2)). However, it is unknown whether VEGF-A(165) is mediating PGI(2) synthesis through VEGF receptor-1 (VEGFR-1) and/or VEGF receptor-2 (VEGFR-2) activation and whether the coreceptor NRP-1 potentiates VEGF-A(165) activity. In this study, PGI(2) synthesis in bovine aortic endothelial cells (BAEC) was assessed by quantifying its stable metabolite (6-keto prostaglandin F(1alpha), 6-keto PGF(1alpha)) by enzyme-linked immunosorbent assay. Treatment of BAEC with VEGF analogs, VEGF-A(165) (VEGFR-1, VEGFR-2 and NRP-1 agonist) and VEGF-A(121) (VEGFR-1 and VEGFR-2 agonist) (up to 10(-9) m), increased PGI(2) synthesis by 70- and 40-fold within 15 min. Treatment with VEGFR-1 (placental growth factor and VEGF-B) or VEGFR-2 (VEGF-C) agonist did not increase PGI(2) synthesis. The combination of VEGFR-1 and VEGFR-2 agonists did not increase PGI(2) release. Pretreatment with a VEGFR-2 inhibitor abrogated PGI(2) release mediated by VEGF-A(165) and VEGF-A(121), and pretreatment of BAEC with antisense oligomers targeting VEGFR-1 or VEGFR-2 mRNA reduced PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121) up to 79%. In summary, our data demonstrate that the activation of VEGFR-1 and VEGFR-2 heterodimer (VEGFR-1/R-2) is essential for PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121), which cannot be reproduced by the parallel activation of VEGFR-1 and VEGFR-2 homodimers with corresponding agonists. In addition, the binding of VEGF-A(165) to NRP-1 potentiates its capacity to promote PGI(2) synthesis.  相似文献   

16.
Vascular endothelial growth factor (VEGF) acts as a hierarchically high switch of the angiogenic cascade by interacting with its high affinity VEGF receptors and with neuropilin co-receptors. VEGF(165) binds to both Neuropilin-1 (NP-1) and VEGFR-2, and it is believed that ligand binding forms an extracellular bridge between both molecules. This leads to complex formation, thereby enhancing VEGFR-2 phosphorylation and subsequent signaling. We found that inhibition of VEGF receptor (VEGFR) phosphorylation reduced complex formation between NP-1 and VEGFR-2, suggesting a functional role of the cytoplasmic domain of VEGFR-2 for complex formation. Correspondingly, deleting the PDZ-binding domain of NP-1 decreased complex formation, indicating that extracellular VEGF(165) binding is not sufficient for VEGFR-2-NP-1 interaction. Synectin is an NP-1 PDZ-binding domain-interacting molecule. Experiments in Synectin-deficient endothelial cells revealed reduced VEGFR-2-NP-1 complex formation, suggesting a role for Synectin in VEGFR-2-NP-1 signaling. Taken together, the experiments have identified a novel mechanism of NP-1 interaction with VEGFR-2, which involves the cytoplasmic domain of NP-1.  相似文献   

17.
The vascular endothelial growth factor (VEGF) receptor tyrosine kinase subtype kinase insert domain receptor (KDR) contains seven extracellular Ig-like domains, of which the three most amino-terminal contain the necessary structural features required for VEGF binding. To clarify the functional role of KDR Ig-like domains 4-7, we compared VEGF-induced signaling in human embryonic kidney and porcine aortic endothelial cells expressing native versus mutant receptor proteins in which Ig-like domains 4-7, 4-6, or 7 had been deleted. Western blotting using an anti-receptor antibody indicated equivalent expression levels for each of the recombinant proteins. As expected, VEGF treatment robustly augmented native receptor autophosphorylation. In contrast, receptor autophosphorylation, as well as downstream signaling events, were VEGF-independent for cells expressing mutant receptors. (125)I-VEGF(165) bound with equal or better affinity to mutant versus native receptor, although the number of radioligand binding sites was significantly reduced because a significant percentage of mutant, but not native, receptors were localized to the cell interior. As was the case for native KDR, (125)I-VEGF(165) binding to the mutant receptors was dependent upon cell surface heparan sulfate proteoglycans, and (125)I-VEGF(121) bound with an affinity equal to that of (125)I-VEGF(165) to the native and mutant receptors. It is concluded that KDR Ig-like domains 4-7 contain structural features that inhibit receptor signaling by a mechanism that is independent of neuropilin-1 and heparan sulfate proteoglycans. We speculate that this provides a cellular mechanism for blocking unwanted signaling events in the absence of VEGF.  相似文献   

18.
Vascular endothelial cell growth factor-A(165) (VEGF-A(165)) is critical for angiogenesis. Although protein kinase C-mediated protein kinase D(PKD)activation was implicated in the response, the detailed mechanism remains unclear. In this study, we found that VEGF-A(165)-stimulated tyrosine phosphorylation of PKD and the dominant negative mutant of PKD, PKD(Y463F), inhibited VEGF-A(165)-induced human umbilical vein endothelial cell (HUVEC) proliferation. In addition, PKD(S738A/S742A) overexpression inhibited VEGF-induced HUVEC migration. Furthermore, knockdown of PKD by its specific small interfering RNA inhibited VEGF-induced HUVEC proliferation and migration. Moreover transfection of PKD(Y463F), PKD(S738A/S742A), or PKD-small interfering RNA blocked VEGF-induced angiogenesis in vivo. Our signaling experiments show that KDR not Flt-1 mediated PKD tyrosine phosphorylation and KDR tyrosine residues 951 and 1059 were required for VEGF-A(165)-stimulated PKD serine and tyrosine phosphorylation, respectively. Whereas G protein Gbetagamma subunits were required for both PKD serine phosphorylation and tyrosine phosphorylation, intracellular Ca(2+) mobilization was required for VEGF-A(165)-stimulated PKD tyrosine phosphorylation and phospholipase C (PLC) activity was required for PKD serine phosphorylation. Surprisingly, the PLC inhibitor did not inhibit PKD tyrosine phosphorylation. Instead, PKD tyrosine 463 was required for VEGF-A(165)-stimulated PLCgamma tyrosine phosphorylation. Moreover, PKD interacted with PLCgamma even in unstimulated cells, and PKD tyrosine 463 phosphorylation was not required for this interaction. Together, we demonstrate that PKD interacts with PLCgamma and becomes tyrosine phosphorylated upon VEGF stimulation, leading to PLCgamma activation and angiogenic response of VEGF-A(165).  相似文献   

19.
Neuropilin-1 (np-1) and neuropilin-2 (np-2) are receptors for axon guidance factors belonging to the class 3 semaphorins. np-1 also binds to the 165-amino acid heparin-binding form of VEGF (VEGF(165)) but not to the shorter VEGF(121) form, which lacks a heparin binding ability. We report that human umbilical vein-derived endothelial cells express the a17 and a22 splice forms of the np-2 receptor. Both np-2 forms bind VEGF(165) with high affinity in the presence of heparin (K(D) 1.3 x 10(-10) m) but not VEGF(121). np-2 also binds the heparin-binding form of placenta growth factor. These binding characteristics resemble those of np-1. VEGF(145) is a secreted heparin binding VEGF form that contains the peptide encoded by exon 6 of VEGF but not the peptide encoded by exon 7, which is present in VEGF(165). VEGF(145) binds to np-2 with high affinity (K(D) 7 x 10(-10) m). Surprisingly, VEGF(145) did not bind to np-1. Indeed, VEGF(145) does not bind to MDA-MB-231 breast cancer cells, which predominantly express np-1. By contrast, VEGF(145) binds to human umbilical vein-derived endothelial cells, which express both np-1 and np-2. The binding of VEGF(165) to porcine aortic endothelial cells expressing recombinant np-2 did not affect the proliferation or migration of the cells. Nevertheless, it is possible that VEGF-induced np-2-mediated signaling will take place only in the presence of other VEGF receptors such as VEGF receptor-1 or VEGF receptor-2.  相似文献   

20.
Neuropilin-1 (NP-1) was first identified as a semaphorin receptor involved in neuron guidance. Subsequent studies demonstrated that NP-1 also binds an isoform of vascular endothelial growth factor (VEGF) as well as several VEGF homologs, suggesting that NP-1 may also function in angiogenesis. Here we report in vitro binding experiments that shed light on the interaction between VEGF165 and NP-1, as well as a previously unknown interaction between NP-1 and one of the VEGF receptor tyrosine kinases, VEGFR1 or Flt-1. BIAcore analysis demonstrated that, with the extracellular domain (ECD) of NP-1 immobilized at low density, VEGF165 bound with low affinity (K(d) = 2 microm) and fast kinetics. The interaction was dependent on the heparin-binding domain of VEGF165 and increased the affinity of VEGF165 for its signaling receptor VEGFR2 or kinase insert domain-containing receptor. The affinity of VEGF165 for the NP-1 ECD was greatly enhanced either by increasing the density of immobilized NP-1 (K(d) = 113 nm) or by the addition of heparin (K(d) = 25 nm). We attribute these affinity enhancements to avidity effects mediated by the bivalent VEGF165 homodimer or multivalent heparin. We also show that the NP-1 ECD binds with high affinity (K(d) = 1.8 nm) to domains 3 and 4 of Flt-1 and that this interaction inhibits the binding of NP-1 to VEGF165. Based on these results, we propose that NP-1 acts as a coreceptor for various ligands and that these functions are dependent on the density of NP-1 on the cell membrane. Furthermore, Flt-1 may function as a negative regulator of angiogenesis by competing for NP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号