首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclopentadienyl tricarbonylmetal (CpTM, M = Re, (94m)Tc) complexes, some based on a typical nonsteroidal estrogen, were prepared with the aim of developing technetium- and rhenium-labeled imaging agents for estrogen receptor (ER) positive breast tumors. CpT[(94m)Tc] compounds with simple cyclopentadienyl substituents were first synthesized using a modified double ligand transfer reaction. The in vivo biodistribution of one of these CpT[(94m)Tc] complexes was determined by tissue dissection and microPET imaging. Novel C-ring substituted analogues of cyclofenil, a nonsteroidal compound known to bind the ER, were also prepared, and their ER binding was measured. Because of their low ER affinity, however, labeling and imaging studies of these compounds were not pursued. It is notable that the highest ER binding analogue, a CpTRe cyclofenil derivative, could be synthesized from the corresponding ferrocenyl cyclofenil analogue by the double ligand transfer reaction. This further demonstrates the versatility of the double ligand transfer reaction and indicates that the synthesis of technetium and rhenium radiolabeled agents for breast tumor imaging and therapy is also likely to be successful.  相似文献   

2.
To develop technetium and rhenium-labeled imaging agents for estrogen receptor (ER) positive breast tumors, we have prepared tridentate metal tricarbonyl chelates substituted at the 7alpha- and 17alpha-positions of estradiol. Some of the Re(CO)(3) conjugates have high binding for the ER in vitro. The in vivo biodistribution of the highest affinity of these novel metal tricarbonyl conjugates, prepared as the (94m)Tc labeled analogue, was evaluated by tissue dissection and microPET imaging. Although target tissue-selective uptake was not apparent, it is notable that microPET imaging identified the stomach as a major site of activity deposition, a site that might have been missed by standard tissue distribution studies.  相似文献   

3.
Cyclopentadienyltricarbonyl rhenium (CpRe(CO)(3)) systems can be prepared from ferrocenes and perrhenate by a double ligand transfer (DLT) reaction that gives reasonable yields and shows excellent functional group tolerance. We used this reaction for the direct preparation of CpRe(CO)(3)-phenyltropane conjugates. Such agents, when labeled with technetium-99m, might function as imaging agents for the dopamine transporter (DAT) system that would be useful for assessing the onset and severity of Parkinson's disease. Of the CpRe(CO)(3)-tropane conjugates prepared by the DLT reaction (as well as other analogues prepared by related methods), those substituted at the N-8 position seem most promising; their affinity for the DAT in all cases was high, and their ferrocene precursors for the DLT reaction can be prepared in a convenient manner. By contrast, the 3 beta-conjugates were poor DAT binders. The modular nature of these systems offers considerable flexibility that could be used to improve the binding characteristics of these compounds further.  相似文献   

4.
Novel 3-O-[1,2;5,6-di-O-isopropylidene-alpha-D-glucofuranose] and 3-O-[D-glucose] derivatives with an iminodiacetate (N,O,O), a histidinate, and an N-(acetetyl)picolylamine (N,N,O) chelating system for tridentate coordination of the organometallic M(CO)(3)-fragment (M = Tc, Re) have been prepared. The chelates were introduced and assembled through reductive amination starting from 3-O-[1,2;5,6-di-O-isopropylidene-alpha-D-glucofuranose]-acetaldehyde. After deprotection, the pyranose derivatives were reacted with the precursor [NEt(4)](2)[ReBr(3)(CO)(3)] to afford the corresponding organometallic complexes in yields between 54% and 94%. The NMR, MS, and IR analyses corroborated the tridentate coordination of the organometallic metal center exclusively via the synthetic chelates. In the case of the N-(acetyl)picolylamine derivative, the coordinative properties were further confirmed by X-ray structure analysis of the first Re(CO)(3)-D-glucofuranose complex. All glucose complexes unveiled good stability and solubility in organic and aqueous media.  相似文献   

5.
New tin and thallium reagents capable of transferring the 1,2-di-tert-butylcyclopentadienyl moiety are easily prepared and utilized in furthering the transition metal organometallic chemistry of this intersting ligand. Lithium 1,2-di-tert-butylcyclopentadienide (1) reacts cleanly and selectively with SnClMe3 to give 2,3-di-tert-butyl-5-trimethylstannyl-1,3-cyclopentadiene (2), which in turn reacts with Re(CO)5Br to form the half-sandwich complex [Re(η5-C5H3(1,2-But)2)(CO)3] (3). The reaction between thallium ethoxide and 1,5-ditert-butyl-1,3-cyclopentadiene in hexane affords the excellent cyclopentadienyl transfer reagent, thallium 1,2-di-tert-butylcyclopentadienide (4). The thallium salt reacts with [Ru(COD)Cl2]n to give the sandwich complex [Ru(η5-C5H3(1,2-Bu2t)2)] (5).  相似文献   

6.
Two kit preparations of the organometallic precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in aqueous media are presented. Method A uses gaseous carbon monoxide and amine borane (BH(3).NH(3)) as the reducing agent. In method B CO(g) is replaced by K(2)[H(3)BCO(2)] that releases carbon monoxide during hydrolysis. Both procedures afford the desired precursor in yields >85% after 10 min at 60 degrees C. HPLC and TLC analyses revealed 7 +/- 3% of unreacted (188)ReO(4)(-) and <5% of colloidal (188)ReO(2). Solutions of up to 14 GBq/mL Re-188 have been successfully carbonylated with these two methods. The syntheses of two tailor-made bifunctional ligand systems for the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) are presented. The tridentate chelates consist of a bis[imidazol-2-yl]methylamine or an iminodiacetic acid moiety, respectively. Both types of ligand systems have been prepared with alkyl spacers of different length and a pendent primary amino or carboxylic acid functionality, enabling the amidic linkage to biomolecules. The tridentate coordination of the ligands to the rhenium-tricarbonyl core could be elucidated on the macroscopic level by X-ray structure analyses and 1D and 2D NMR experiments of two representative model complexes. On the nca level, the ligands allow labeling yields >95% with [(188)Re(H(2)O)(3)(CO)(3)](+) under mild reaction conditions (PBS buffer, 60 degrees C, 60 min) at ligand concentrations between 5 x 10(-4) M and 5 x 10(-5) M. Thus, specific activities of 22-220 GBq pe micromol of ligand could be achieved. Incubation of the corresponding Re-188 complexes in human serum at 37 degrees C revealed stabilities between 80 +/- 4% and 45 +/- 10% at 24 h, respectively, and 63 +/- 3% and 34 +/- 3% at 48 h postincubation in human serum depending on the chelating system. Decomposition product was mainly (188)ReO(4)(-). The routine kit-preparation of the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in combination with tailor-made ligand systems enables the organometallic labeling of biomolecules with unprecedented high specific activities.  相似文献   

7.
The consensus estrogen response element (cERE) contains a palindromic sequence of two 6-base pair (bp) half-sites separated by a spacer size of 3bp. This study investigates the extent to which estrogen receptors, ERalpha and ERbeta can bind target sequences not considered as conventional EREs. We determined the effect of spacer size (n=0-4) on the binding affinity and conformation of ERalpha and ERbeta in these complexes and the effect of HMGB1 on the complexation. We find (1) both receptors bind similarly and with progressively reduced affinity to cEREn, as n differs from 3; (2) however, both receptors bind as strongly to the cERE with no spacer (cERE0) as to cERE3; (3) HMGB1 enhances ER binding affinity in all complexes, resulting in strong and comparable binding affinities in all complexes examined; (4) the full-length ER binding differs strikingly from similar binding studies for the ER DNA binding domain (ERDBD), with the full-length ER dimer exhibiting strong binding affinity, enormous plasticity and retaining binding cooperativity as the spacer size varies; (5) both protease digestion profiles and monoclonal antibody binding assays indicate the conformation of the receptor in the ER/ERE complex is sensitive to the spacer size; (6) the ER/cERE0 complex appears to be singularly different than the other ER/cEREn complexes in binding and conformation. This multifaceted approach reinforces the notion of the plasticity in ER binding and leads to the hypothesis that in most cases, the minimum requirement for estrogen receptor binding is the ERE half-site, in which one or more cofactors, such as HMGB1, can cooperate to decrease ER binding specificity, while increasing its binding affinity.  相似文献   

8.
The metal-sulfur bonding present in the transition metal-thiolate complexes CpFe(CO)2SCH3, CpFe(CO)2StBu, CpRe(NO)(PiPr3)SCH3, and CpRe(NO)(PPh3)SCH3 (Cp = η5-C5H5) is investigated via gas-phase valence photoelectron spectroscopy. For all four complexes a strong dπ-pπ interaction exists between a filled predominantly metal d orbital of the [CpML2]+ fragment and the purely sulfur 3pπ lone pair of the thiolate. This interaction results in the highest occupied molecular orbital having substantial M-S π antibonding character. In the case of CpFe(CO)2SCH3, the first (lowest energy) ionization is from the Fe-S π orbital, the next two ionizations are from predominantly metal d orbitals, and the fourth ionization is from the Fe-S π orbital. The pure sulfur pπ lone pair of the thiolate fragment is less stable than the filled metal d orbitals of the [CpFe(CO)2]+ fragment, resulting in a Fe-S π combination that is higher in sulfur character than the Fe-S π combination. Interestingly, substitution of a tert-butyl group for the methyl group on the thiolate causes little shift in the first ionization, in contrast to the shift observed for related thiols. This is a consequence of the delocalization and electronic buffering provided by the Fe-S dπ-pπ interaction. For CpRe(NO)(PiPr3)SCH3 and CpRe(NO)(PPh3)SCH3, the strong acceptor ability of the nitrosyl ligand rotates the metal orbitals for optimum backbonding to the nitrosyl, and the thiolate rotates along with these orbitals to a different preferred orientation from that of the Fe complexes. The initial ionization is again the M-S π combination with mostly sulfur character, but now has considerable mixing among several of the valence orbitals. Because of the high sulfur character in the HOMO, ligand substitution on the metal also has a small effect on the ionization energy in comparison to the shifts observed for similar substitutions in other molecules. These experiments show that, contrary to the traditional interpretation of oxidation of metal complexes, removal of an electron from these metal-thiolate complexes is not well represented by an increase in the formal oxidation state of the metal, nor by simple oxidation of the sulfur, but instead is a variable mix of metal and sulfur content in the highest occupied orbital.  相似文献   

9.
Radiolabeling of biologically active molecules with the [(99m)Tc(CO)(3)](+) unit has been of primary interest in recent years. With this in mind, we herein report symmetric (L(1)) and asymmetric (L(2)-L(5)) pyrazolyl-containing chelators that have been evaluated in radiochemical reactions with the synthon [(99m)Tc(H(2)O)(3)(CO)(3)](+) (1a). These reactions yielded the radioactive building blocks [(99m)Tc(CO)(3)(k(3)-L)](+) (L = L(1)-L(5), 2a-6a), which were identified by RP-HPLC. The corresponding Re surrogates (2-6) allowed for macroscopic identification of the radiochemical conjugates. Complexes 2a-6a, with log P(o/w) values ranging from -2.35 to 0.87, were obtained in yields of > or =90% using ligand concentrations in the 10(-5-)10(-4) M range. Challenge studies with cysteine and histidine revealed high stability for all of these radioactive complexes, and biodistribution studies in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway. Based on the framework of the asymmetric chelators, the novel bifunctional ligands 3,5-Me(2)-pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(6)) and pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(7)) have been synthesized and their coordination chemistry toward (NEt(4))(2)[ReBr(3)(CO)(3)] (1) has been explored. The resulting complexes, fac-[Re(CO)(3)(k(3)-L)]Br (L(6)(7), L(7)(8)), contain tridentate ancillary ligands that are coordinated to the metal center through the pyrazolyl and amine nitrogen atoms, as observed for the other related building blocks. L(6) and L(7) were coupled to a glycylglycine ethyl ester dipeptide, and the resulting functionalized ligands were used to prepare the model complexes fac-[Re(CO)(3)(kappa(3)-3,5-Me(2)-pz(CH(2))(2)N(glygly)(CH(2))(2)NH(2))](+) (9/9a) and fac-[Re(CO)(3)(kappa(3)-pz(CH(2))(2)N(CH(2))(3)(glygly)(CH(2))(2)NH(2))](+) (10/10a) (M = Re, (99m)Tc). These small conjugates have been fully characterized and are reported herein. On the basis of the in vitro/in vivo behavior of the model complexes (2a-6a, 9a, 10a), we chose to evaluate the in vitro/in vivo biological behavior of a new tumor-seeking Bombesin pyrazolyl conjugate, [(L(6))-G-G-G-Q-W-A-V-G-H-L-M-NH(2)], that has been labeled with the [(99m)Tc(CO)(3)](+) metal fragment. Stability, in vitro cell binding assays, and pharmacokinetics studies in normal mice are reported herein.  相似文献   

10.
The organometallic precursor (NEt(4))(2)[ReBr(3)(CO)(3)] was reacted with bidendate dithioethers (L) of the general formula H(3)C-S-CH(2)CH(2)-S-R (R = -CH(2)CH(2)COOH, CH(2)-C&tbd1;CH) and R'-S-CH(2)CH(2)-S-R' (R' = CH(3)CH(2)-, CH(3)CH(2)-OH, and CH(2)COOH) in methanol to form stable rhenium(I) tricarbonyl complexes of the general composition [ReBr(CO)(3)L]. Under these conditions, the functional groups do not participate in the coordination. As a prototypic representative of this type of Re compounds, the propargylic group bearing complex [ReBr(CO(3))(H(3)C-S-CH(2)CH(2)-S-CH(2)C&tbd1;CH)] Re2 was studied by X-ray diffraction analysis. Its molecular structure exhibits a slightly distorted octahedron with facial coordination of the carbonyl ligands. The potentially tetradentate ligand HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH was reacted with the trinitrato precursor [Re(NO(3))(3)(CO)(3)](2-) to yield a cationic complex [Re(CO)(3)(HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH)]NO(3) Re8 which shows the coordination of one hydroxy group. Re8 has been characterized by correct elemental analysis, infrared spectroscopy, capillary electrophoresis, and X-ray diffraction analysis. Ligand exchange reaction of the carboxylic group bearing ligands H(3)C-S-CH(2)CH(2)-S-CH(2)CH(2)-COOH and HOOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH with (NEt(4))(2)[ReBr(3)(CO)(3)] in water and with equimolar amounts of NaOH led to complexes in which the bromide is replaced by the carboxylic group. The X-ray structure analysis of the complex [Re(CO)(3)(OOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH)] Re6 shows the second carboxylic group noncoordinated offering an ideal site for functionalization or coupling a biomolecule. The no-carrier-added preparation of the analogous (99m)Tc(I) carbonyl thioether complexes could be performed using the precursor fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+), with yields up to 90%. The behavior of the chlorine containing (99m)Tc complex [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 in aqueous solution at physiological pH value was investigated. In saline, the chromatographically separated compound was stable for at least 120 min. However, in chloride-free aqueous solution, a water-coordinated cationic species Tc1a of the proposed composition [(99m)Tc(H(2)O)(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))](+) occurred. The cationic charge of the conversion product was confirmed by capillary electrophoresis. By the introduction of a carboxylic group into the thioether ligand as a third donor group, the conversion could be suppressed and thus the neutrality of the complex preserved. Biodistribution studies in the rat demonstrated for the neutral complexes [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 and [(99m)TcCl(CO)(3)(CH(2)-S-CH(2)CH(2)-S-CH(2)-C&tbd1;CH)] Tc2 a significant initial brain uptake (1.03 +/- 0.25% and 0.78 +/- 0.08% ID/organ at 5 min. p.i.). Challenge experiments with glutathione clearly indicated that no transchelation reaction occurs in vivo.  相似文献   

11.
This work describes the use of 3-hydroxy-4-pyridinone ligands for binding the [M(CO)(3)](+) core (M = Re, Tc) in the context of preparing novel Tc(I) and Re(I) glucose conjugates. Five pyridinone ligands bearing pendent carbohydrate moieties, HL(1-5), were coordinated to the [M(CO)(3)](+) core on the macroscopic scale (M = Re) and on the tracer scale (M = (99m)Tc, (186)Re). On the macroscopic scale the complexes, ReL(1-5)(CO)(3)(H(2)O), were thoroughly characterized by mass spectrometry, IR spectroscopy, UV-visible spectroscopy, elemental analysis, and 1D/2D NMR spectroscopy. Characterization confirmed the bidentate coordination of the pyridinone and the pendent nature of the carbohydrate and suggests the presence of a water molecule in the sixth coordination site. In preliminary biological evaluation, both the ligands and complexes were assessed as potential substrates or inhibitors of hexokinase, but showed no activity. Labeling via the [(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor gave the tracer species (99m)TcL(1-5)(CO)(3)(H(2)O) in high radiochemical yields. Similar high radiochemical yields when labeling with (186)Re were facilitated by in situ preparation of the [(186)Re(CO)(3)(H(2)O)(3)](+) species in the presence of HL(1-5) to give (186)ReL(1-5)(CO)(3)(H(2)O). Stability challenges, incubating (99m)TcL(1-5)(CO)(3)(H(2)O) in the presence of excess cysteine and histidine, confirmed complex stability up to 24 h.  相似文献   

12.
Mono- and binuclear complexes of (Re(CO)3Cl) with dipyrido[2,3-a:3',2'-c]-6,7-dimethylphenazine (ppbMe2) were synthesised and their photophysical properties probed using picosecond time-resolved infrared spectroscopy (TRIR). Excitation of these complexes in solution at 400 nm produces short-lived excited states. The IR spectrum of the excited state of the mononuclear [Re(CO)3Cl(ppbMe2)] have nu(CO) bands shifted to higher wavenumber relative to those of the ground state. This is consistent with formation of a (3)MLCT excited state. The IR spectrum of the excited state of the bimetallic [(Re(CO)3Cl)2(micro-ppbMe2)] shows the formation of two distinct groups of nu(CO) bands. This is interpreted as the formation of two distinct Re sites arising from a localised MLCT state with formally oxidised Re centre and a formally reduced bridging ligand. The nu(CO) bands of the adjacent Re centre are affected by the reduction of the bridging ligand. On the IR timescale the excited state structure is best formulated as [Cl(CO)3Re(II)(micro-ppbMe2 *-)Re(I)(CO)3Cl].  相似文献   

13.
We have developed a transient transfection system using the Cytomegalovirus (CMV) promoter to express the human estrogen receptor (ER) at very high levels in COS-1 cells and have used it to study the interaction of agonist and antagonist receptor complexes with estrogen response element (ERE) DNA. ER can be expressed to levels of 20-40 pmol/mg or 0.2-0.3% of total soluble protein and all of the soluble receptor is capable of binding hormone. The ER binds estradiol with high affinity (Kd 0.2 nM), and is indistinguishable from native ER in that the receptor is capable of recognizing its cognate DNA response element with high affinity, and of transactivating a transgene in an estradiol-dependent manner. Gel mobility shift assays reveal interesting ligand-dependent differences in the binding of receptor complexes to ERE DNA. Receptors occupied by estradiol or the type I antiestrogen transhydroxytamoxifen bind to DNA response elements when exposed to the ligand in vitro or in vivo. Likewise, receptors exposed to the type II antiestrogen ICI 164,384 in vitro bind to ERE DNA. However, when receptor exposure to ICI 164,384 is carried out in vivo, the ER-ICI 164,384 complexes do not bind to ERE DNA, or do so only weakly. This effect is not reversed by subsequent incubation with estradiol in vitro, but is rapidly reversible by in vivo estradiol exposure of intact COS-1 cells. This suggests there may be some cellular process involved in the mechanism of antagonism by the pure antiestrogen ICI 164,384, which is not observed in cell-free extracts.  相似文献   

14.
As an integral part of the development of a new technique using organometallic markers for the detection of hormone receptors by FT-IR spectroscopy, a series of estradiol derivatives labeled with Cr(CO)3 or Cr(CO)2CS fragments on the A ring has been synthesized. The stereochemistry of one of these steroids, alpha-[3-(dimethyl-tert-butylsiloxy)-17 beta-estradiol]dicarbonyl(thiocarbonyl)chromium(0), has been established by X-ray diffraction. The organochromium-labeled steroids are stable in aqueous methanol solution, and their relative binding affinities to estrogen receptor have been determined; these values vary from 0.4 to 28%. The complex exhibiting the strongest affinity, [3-O-(3-hydroxypropyl)-17 beta-estradiol]-chromium tricarbonyl complex, has been prepared in a tritiated form with a high specific activity (4.1 Ci/mmol). This tritiated hormone binds reversibly to the estradiol receptor in lamb uterine cytosol with an affinity (Kd = 0.85 nM) and number of binding sites (n = 770 fmol/mg of protein) close to the values observed for estradiol itself. The level of nonspecific binding is low, and the hormone is not bound significantly to other nontarget tissues. The observation that the binding affinity of the steroid depends on which side of the steroidal A ring the organometallic label is bound demonstrates the nonequivalence of the two sides of the A ring with respect to the receptor site. The FT-IR spectra of the organochromium markers in the v(CO) region can be used for the detection of the estradiol receptor in lamb uterine cytosol.  相似文献   

15.
The photophysics of fac-[Re(R)(CO)(3)(CO(2)Et-dppz)](+) (R = py (), 4-Me(2)N-py (); CO(2)Et-dppz = dipyrido[3,2a:2',3'c]phenazine-11-carboxylic ethyl ester) was studied with luminescence spectroscopy and time-resolved infrared (TRIR) spectroscopy in the metal carbonyl (2,100-1,800 cm(-1)) and organic ester (1,800-1,600 cm(-1)) regions. For 1, the picosecond TRIR spectra in the metal carbonyl region provided evidence for the formation of an intra-ligand IL (pi-pi) excited state, which partially decays to an equilibrium with the metal-to-ligand charge transfer (MLCT) excited state. For 2 it is evident that both IL (pi-pi) and MLCT excited states are formed within 2 ps of excitation. The magnitude of the nu(CO) shift in the metal carbonyl region following excitation allows the MLCT excited states to be described more precisely as a dpi(Re) -->pi (phenazine) (3)MLCT state for 1 and as a dpi(Re) -->pi (phenanthroline) (3)MLCT state for 2.  相似文献   

16.
17.
A bioorganometallic approach to malaria therapy led to the discovery of ferroquine (FQ, SSR97193). To assess the importance of the electronic properties of the ferrocenyl group, cyclopentadienyltricarbonylrhenium analogues related to FQ, were synthesized. The reaction of [N-(7-chloro-4-quinolinyl)-1,2-ethanodiamine] with the cyrhetrenylaldehyde complexes (η(5)-C(5)H(4)CHO)Re(CO)(3) and [η(5)-1,2-C(5)H(3)(CH(2)OH)(CHO)]Re(CO)(3) produces the corresponding imine derivatives [η(5)-1,2-C(5)H(3)(R)(CHN-CH(2)CH(2)NH-QN)]Re(CO)(3) R=H 3a; R=CH(2)OH 3b; QN=N-(7-Cl-4-quinolinyl). Reduction of 3a and 3b with sodium borohydride in methanol yields quantitatively the amine complexes [η(5)-1,2-C(5)H(3)(R)(CH(2)-NH-CH(2)CH(2)NH-QN)]Re(CO)(3) R=H 4a; R=CH(2)OH 4b. To establish the role of the cyrethrenyl moiety in the antimalarial activity of this series, purely organic parent compounds were also synthesized and tested. Evaluation of antimalarial activity measured in vitro against the CQ-resistant strains (W2) and the CQ-susceptible strain (3D7) of Plasmodium falciparum indicates that these cyrhetrene conjugates are less active compared to their ferrocene and organic analogues. These data suggest an original mode-of-action of FQ and ferrocenyl analogues in relationship with the redox pharmacophore.  相似文献   

18.
Hydrazinonicotinamide (HYNIC) forms stable coordination complexes with Tc-99m when reacted with Tc(V)oxo species such as Tc-mannitol or other Tc-polyhydric complexes. However, radio-HPLC of [Tc-For-MLFK-HYNIC] labeled via Tc-polyhydric ligands demonstrated multiple radiochemical species each with unique biodistribution patterns. This is likely due to the fact that Tc can bind to the hydrazino moiety, as well as polyhydric ligands, in a variety of coordination geometries. Tridentate ligands, such as bis(mercaptoethyl)methylamine (NS2), may constrain the possible coordination geometries and improve overall stability. To investigate this, we synthesized NS2, converted the [Tc-mannitol-For-MLFK-HYNIC] to the corresponding NS2-containing complex [Tc-NS2-For-MLFK-HYNIC], and compared its infection imaging and biodistribution properties with [Tc-mannitol-For-MLFK-HYNIC]. Conversion to the NS2 complex was confirmed by HPLC which showed a single unique hydrophobic species with retention time greater than the [Tc-mannitol-For-MLFK-HYNIC] complex. Imaging experiments with both preparations were performed in rabbits with E. coli infections in the left thigh. Tissue radioactivity measurements demonstrated that compared to Tc-mannitol-peptide, accumulation of Tc-NS2-peptide was lower in blood, heart, and normal muscle and higher in spleen, infected muscle, and pus (p < 0.01). These results indicate that the Tc-NS2-peptide complex is chemically more homogeneous and exhibits improved infection localization and biodistribution properties. In an effort to model the interactions of the metal-HYNIC core with NS2 and related ligand types, the reactions of [ReCl3(NNC5H4NH)(NHNC5H4N)] and [99TcCl3(NNC5H4NH)(NHNC5H4N)], effective structural analogues for the [M(NNC5H4NH(x))2] core, with NS2, C5H3N-2,6-(CH2SH)2, O(CH2CH2SH)2, and S(CH2CH2SH)2 were investigated and the compounds [M[CH3N(CH2CH2S)2](NNC5H4N)(NHNC5H4N] (M = 99Tc (5a), Re (5b)), [Re[C5H3N-2,6-(CH2S)2](NNC5H4N)(NHNC5H4N)].CH2Cl2.0.5MeOH (7), [Re[SCH2CH2)2O] (NNC5H4N)(NHNC5H4N)] (8), and [Re[(SCH2CH2)2S](NNC5H4NH)(NHNC5H4N)]Cl (9) were isolated. Similarly, the reaction of [ReCl3(NNC5H4NH)(NHNC5H4N)] with the bidentate ligands pyridine-2-methanethiol and 3-(trimethlysilyl)pyridine-2-thiol led to the isolation of [ReCl(C5H4N-2-CH2S) (NNC5H4N)(NHNC5H4N)] (10) and [Re(2-SC5H3N-3-SiMe3)2 (NNC5H4N)(NHNC5H4N)] (11), respectively, while reaction with N-methylimidazole-2-thiol yielded the binuclear complex [Re(OH)Cl(SC3H2N2CH3)2(NNC5H4N)2 (NHNC5H4N)2] (12). The analogous metal-(HYNIC-OH) precursor, [ReCl3[NNC5H3NH(CO2R)] [NHNC5H3N(CO2R)]] (R = H, 13a; R = CH3, 13b) has been prepared and coupled to lysine to provide [RCl3[NNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)] [NHNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)]].2HCl (14.2HCl), while the reaction of the methyl ester 13b with 2-mercaptopyridine yields [Re(2-SC5H4N)2[NNC5H3N(CO2Me)][NHNC5H3N(CO2Me)]] (15). While the chemical studies confirm the robustness of the M-HYNIC core (M = Tc, Re) and its persistence in ligand substitution reactions at adjacent coordination sites of the metal, the isolation of oligomeric structures and the insolubility of the peptide conjugates of 13, 14, and 15 underscore the difficulty of characterizing these materials on the macroscopic scale, an observation relevant to the persistent concerns with reagent purity and identity on the tracer level.  相似文献   

19.
Manganese tricarbonyl complexes (η5-C5H4CH2CH2Br)Mn(CO)3 (3) and (η5-C5H4CH2CH2I)Mn(CO)3 (4), with an alkyl halide side chain attached to the cyclopentadienyl ligand, were synthesized as possible precursors to chelated alkyl halide manganese complexes. Photolysis of 3 or 4 in toluene, hexane or acetone-d6 resulted in CO dissociation and intramolecular coordination of the alkyl halide to manganese to produce (η51-C5H4CH2CH2Br)Mn(CO)2 (5) and (η51-C5H4CH2CH2I)Mn(CO)2 (6). Low temperature NMR and IR spectroscopy established the structures of 5 and 6. Photolysis of 3 in a glass matrix at 91 K demonstrated CO release from manganese. Low temperature NMR spectroscopy established that the coordinated alkyl halide complexes are stable to approximately −20°C.  相似文献   

20.
We report the most efficient homogeneous photocatalyst yet for CO(2) reduction using a wide range of visible-light wavelength. We synthesized new Ru(II)-Re(I) binuclear complexes with 1,3-bis(4'-methyl-[2,2']bipyridinyl-4-yl)-propan-2-ol (bpyC3bpy) as a bridge ligand, specifically [Ru-ReP(OEt)(3)](3+) and [Ru-Repy](3+) where a P(OEt)(3) or pyridine ligand coordinates on the Re site. Their photocatalytic activities were compared with [Ru-ReCl](2+), which has a Cl(-) ligand on the Re site and has recently been reported as a much better photocatalyst (Phi = 0.12, TN(CO) = 160) than a 1:1 mixed system of the corresponding Ru(II) and Re(I) mononuclear complexes. The best photocatalyst was [Ru-ReP(OEt)(3)](3+), for which Phi = 0.21 and TN(CO) = 232. A mechanistic study clearly showed that [Ru-ReP(OEt)(3)](3+) is rapidly converted into the solvento complex [Ru-ReSol](3+), (Sol = DMF or TEOA) which is the actual photocatalyst. Although similar rapid ligand substitution occurs with other supramolecules, the pyridine and Cl(-) anions accelerate the decomposition of the supramolecular photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号